A wire of length $L$ and radius $r$ is clamped rigidly at one end. When the other end of the wire is pulled by a force $f$ its length increases by $l$. Another wire of the same material of length $2L$ and radius $2r$ is pulled by a force $2f$. Then find the increase in length of this wire.
$\mathrm{Y}=\frac{\mathrm{FL}}{\mathrm{Al}}=\frac{f \mathrm{~L}}{\pi r^{2} l}$
$\therefore l=\frac{f \mathrm{~L}}{\pi r^{2} \mathrm{Y}}$
Now for increase in length for second wire,
$l^{\prime}=\frac{(2 f)(2 \mathrm{~L})}{\pi(2 r)^{2} l}$
$=\frac{4 f L}{4 \pi r^{2} l}$
$l^{\prime}=l$
A force of ${10^3}$ newton stretches the length of a hanging wire by $1$ millimetre. The force required to stretch a wire of same material and length but having four times the diameter by $1$ millimetre is
Two wires $A$ and $B$ are of same materials. Their lengths are in the ratio $1 : 2$ and diameters are in the ratio $2 : 1$ when stretched by force ${F_A}$ and ${F_B}$ respectively they get equal increase in their lengths. Then the ratio ${F_A}/{F_B}$ should be
Read the following two statements below carefully and state, with reasons, if it is true or false.
$(a)$ The Young’s modulus of rubber is greater than that of steel;
$(b)$ The stretching of a coil is determined by its shear modulus.
A wire of length $L,$ area of cross section $A$ is hanging from a fixed support. The length of the wire changes to $L_{1}$ when mass $M$ is suspended from its free end. The expression for Young's modulus is
In the given figure, two elastic rods $A$ & $B$ are rigidly joined to end supports. $A$ small mass $‘m’$ is moving with velocity $v$ between the rods. All collisions are assumed to be elastic & the surface is given to be frictionless. The time period of small mass $‘m’$ will be : [$A=$ area of cross section, $Y =$ Young’s modulus, $L=$ length of each rod ; here, an elastic rod may be treated as a spring of spring constant $\frac{{YA}}{L}$ ]