A force of ${10^3}$ newton stretches the length of a hanging wire by $1$ millimetre. The force required to stretch a wire of same material and length but having four times the diameter by $1$ millimetre is
$4 \times {10^3}N$
$16 \times {10^3}N$
$\frac{1}{4} \times {10^3}N$
$\frac{1}{{16}} \times {10^3}N$
Wires $A$ and $B$ are connected with blocks $P$ and $Q$ as shown. The ratio of lengths, radii and Young's modulus of wires $A$ and $B$ are $r, 2r$ and $3r$ respectively ($r$ is a constant). Find the mass of block $P$ if ratio of increase in their corresponding lengths is $1/6r^2$. The mass of block $Q$ is $3M$.
When a certain weight is suspended from a long uniform wire, its length increases by one cm. If the same weight is suspended from another wire of the same material and length but having a diameter half of the first one then the increase in length will be ........ $cm$
A metallic rod having area of cross section $A$, Young’s modulus $Y$, coefficient of linear expansion $\alpha $ and length $L$ tied with two strong pillars. If the rod is heated through a temperature $t\,^oC$ then how much force is produced in rod ?
The modulus of elasticity is dimensionally equivalent to
A wire of length $L$ and radius $r$ is rigidly fixed at one end. On stretching the other end of the wire with a force $F$, the increase in its length is $l$. If another wire of same material but of length $2L$ and radius $2r$ is stretched with a force of $2F$, the increase in its length will be