કોઈ સદિશ $\vec A $ માથી એક નવો સદિશ $\vec B$ મેળવવા માટે તેને $\Delta \theta$ રેડિયન $( \Delta \theta << 1)$ જેટલું કોણાવર્તન કરાવવામાં આવે છે. તો આ કિસ્સામાં $\left| {\vec B - \vec A} \right|$ શું થશે?
$\left| {\vec A} \right|\,\Delta \theta $
$\left| {\vec B} \right|\,\Delta \theta - \left| {\vec A} \right|\,$
$\left| {\vec A} \right|\,\left( {1 - \frac{{\Delta {\theta ^2}}}{2}} \right)$
$0$
જો કોઈ ભૌતિક રાશિનું મૂલ્ય શૂન્ય હોય, તો તે સદિશ હોઈ શકે ? યોગ્ય ઉદાહરણ આપો.
$\vec A$ અને $\vec B$ નો પરિણામી $\vec A$ સાથે $\alpha $ ખૂણો બનાવે છે. અને $\vec B$ સાથે $\beta $ ખૂણો બનાવે તો .....
સદિશ $\overrightarrow a $ ને $d\theta $ખૂણે ફેરવતાં $|\Delta \overrightarrow a |$ અને $\Delta a$ મેળવો.
$10 \,N$ મૂલ્ય વાળા પાંચ સમાન બળોને એક જ સમતલ માં એક બિંદુ પર લગાવવામાં આવે છે.જો તેઓ ની વચ્ચેનો ખૂણો સમાન હોય તો પરિણામી બળ ............. $\mathrm{N}$ થાય?
બે સદિશ $\vec A$ અને $\vec B$ સમાન માન ધરાવે છે. $(\vec A + \vec B)$ નું માન એ $(\vec A - \vec B)$ ના માન કરતા $n$ ગણું છે. $\vec A$ અને $\vec B$ વચ્ચેનો ખૂણો કેટલો હશે?