A vector $\vec A $ is rotated by a small angle $\Delta \theta$ radian $( \Delta \theta << 1)$ to get a new vector $\vec B$ In that case $\left| {\vec B - \vec A} \right|$ is

  • [JEE MAIN 2015]
  • A

    $\left| {\vec A} \right|\,\Delta \theta $

  • B

    $\left| {\vec B} \right|\,\Delta \theta  - \left| {\vec A} \right|\,$

  • C

    $\left| {\vec A} \right|\,\left( {1 - \frac{{\Delta {\theta ^2}}}{2}} \right)$

  • D

    $0$

Similar Questions

Two vectors having equal magnitudes $A$ make an angle $\theta$ with each other. The magnitude and direction of the resultant are respectively

The resultant of $\overrightarrow P $ and $\overrightarrow Q $ is perpendicular to $\overrightarrow P $. What is the angle between $\overrightarrow P $ and $\overrightarrow Q $

The position vectors of points $A, B, C$ and $D$ are $\vec A = 3\hat i + 4\hat j + 5\hat k,\,\vec B = 4\hat i + 5\hat j + 6\hat k,\,\vec C = 7\hat i + 9\hat j + 3\hat k$ and $\vec D = 4\hat i + 6\hat j$ then the displacement vectors $\overrightarrow {AB} $ and $\overrightarrow {CD} $ are

There are two force vectors, one of $5\, N$ and other of $12\, N $ at what angle the two vectors be added to get resultant vector of $17\, N, 7\, N $ and $13 \,N$ respectively

The five sides of a regular pentagon are represented by vectors $A _1, A _2, A _3, A _4$ and $A _5$, in cyclic order as shown below. Corresponding vertices are represented by $B _1, B _2, B _3, B _4$ and $B _5$, drawn from the centre of the pentagon.Then, $B _2+ B _3+ B _4+ B _5$ is equal to

  • [KVPY 2009]