$\sigma$ પૃષ્ઠ ઘનતા ધરાવતી એકસમાન રીતે વિદ્યુતભારિત કરેલ $R$ ત્રિજ્યાની તકતીને ${xy}$ સમતલમાં ટકતીનું કેન્દ્ર ઉગમબિંદુ પર રહે તેમ મૂકેલી છે. તો $z-$ અક્ષ પર ઉગમબિંદુથી $Z$ અંતરે વિદ્યુતક્ષેત્રની તીવ્રતા કેટલી હશે?
${E}=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{{Z}}{\left({Z}^{2}+{R}^{2}\right)^{1 / 2}}\right)$
${E}=\frac{\sigma}{2 \varepsilon_{0}}\left(1+\frac{{Z}}{\left({Z}^{2}+{R}^{2}\right)^{1 / 2}}\right)$
${E}=\frac{2 \varepsilon_{0}}{\sigma}\left(\frac{1}{\left({Z}^{2}+{R}^{2}\right)^{1 / 2}}+{Z}\right)$
${E}=\frac{\sigma}{2 \varepsilon_{0}}\left(\frac{1}{\left({Z}^{2}+{R}^{2}\right)}+\frac{1}{{Z}^{2}}\right)$
$0.5\, m$ ત્રિજ્યાની અર્ધ વર્તૂળ રીંગ કુલ વિદ્યુતભાર $1.4 \times 10^{-9}\, C$ થી સમાન વિદ્યુતભારીત કરેલ છે. રીંગના કેન્દ્ર આગળ વિદ્યુતક્ષેત્રની તીવ્રતા ........$V/m$ છે.
$10\,\mu C$ નો બિંદુવત વીજભાર $X-$ અક્ષના ઉગમબિંદુ પર રાખેલ છે. અક્ષ પરના સ્થાને $40\,\mu C$ નો બિંદુવત વીજભાર મૂકવાથી પરિણામી વિદ્યુતક્ષેત્ર $x =2\,cm$ આગળ શૂન્ય બનશે ?
$5\,\mu C$ બિંદુવત વિજભારથી $80\, cm$ અંતરે વિદ્યુતક્ષેત્રની પ્રબળતા કેટલી હશે?
સમાન બાજુવાળા પંચકોણના દરેક શિરોબિંદુઓ પર $\mathrm{q}$ વિધુતભારવાળા પાંચ વિધુતભારો છે.
$(a)$ $(i)$ પંચકોણના કેન્દ્ર $\mathrm{O}$ પાસે વિધુતક્ષેત્ર કેટલું ?
$(ii)$ જો એક શિરોબિંદુ $(\mathrm{A})$ પરનો વિધુતભાર દૂર કરીએ, તો હવે તેનાં કેન્દ્ર $\mathrm{O}$ પાસે વિધુતક્ષેત્ર કેટલું ?
$(iii)$ જો એક શિરોબિંદુ $\mathrm{A}$ પરના $\mathrm{q}$ વિધુતભારના બદલે $-\mathrm{q}$ વિધુતભાર મૂકીએ તો તેનાં કેન્દ્ર $\mathrm{O}$ પાસે વિધુતક્ષેત્ર કેટલું ?
$(b)$ જો પંચકોણના બદલે $\mathrm{n}$ -બાજવાળો નિયમિત બહકોણ પરના દરેક શિરોબિંદુ પર $\mathrm{q}$ વિધુતભાર મુકીએ તો $(a)$ ના જવાબ પર કેવી અસર થાય ?
નીચેની આકૃતિઓ નિયમિત ષષ્ટકોણ બતાવે છે. જેના શિરોલબિંદુઓ આગળ વિદ્યુતભાર મૂકેલો છે. નીચે આપેલ પૈકી કયા કિસ્સામાં કોનું કેન્દ્ર આગળ વિદ્યુતક્ષેત્ર શૂન્ય છે.