$12\, m$ લંબાઈ અને $6\, kg$ દળ ધરાવતા દોરડાને એક દઢ આધાર સાથે બાંધીને શિરોલંબ લટકાવે છે, અને $2\, kg$ દળના એક પદાર્થને તેના મુક્ત છેડા સાથે જોડેલ છે. દોરડાના નીચેના છેડેથી $6\, cm$ તરંગલંબાઈ ધરાવતા એક નાના લંબગત તરંગ ઉત્પન્ન કરવામાં આવે છે. જ્યારે આ તરંગ ઉપરના છેડે પહોચે ત્યારે તેની તરંગલંબાઈ ($cm$ માં) કેટલી હશે?
$9$
$12$
$6$
$3$
એક દોરી (બંને છેડે જડિત)નું લંબગત સ્થાનાંતર
$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)$
પરથી મળે છે, જ્યાં $x$ અને $y$ $m$ માં અને $t$ $s$ માં છે. દોરીની લંબાઈ $1.5\, m$ અને દળ $3.0 \times 10^{-2}\, kg$ છે.
નીચેના ઉત્તર આપો :
$(a)$ આ વિધેય પ્રગામી તરંગ કે સ્થિત તરંગ રજૂ કરે છે ?
$(b)$ આ તરંગનું વિરુદ્ધ દિશામાં ગતિ કરતા બે તરંગોના સંપાતપણા તરીકે અર્થઘટન કરો. દરેક તરંગની તરંગલંબાઈ, આવૃત્તિ અને ઝડપ કેટલા હશે ?
$(c)$ દોરીમાંનો તણાવ શોધો.
એક સ્ટીલના તારની લંબાઈ $0.72\, m$ અને તેનું દળ $5.0 \times 10^{-3}\, kg$ છે. જો તાર $60\, N$ ના તણાવ હેઠળ હોય, તો તાર પર લંબગત તરંગની ઝડપ કેટલી હશે ?
સ્ટીલના એક તારની લંબાઈ $12.0\, m$ અને દળ $2.10\, kg$ છે. તારમાં લંબગત તરંગની ઝડપ સૂકી હવામાં $20 \,^oC$ તાપમાને ધ્વનિની ઝડપ જેટલી એટલે કે $343\, ms^{-1}$ જેટલી બને તે માટે તારમાં તણાવ કેટલો હોવો જોઈએ ?
$20$ $m$ ની એક સમાન દોરીને એક દઢ આધારથી લટકાવવામાં આવેલ છે.તેના નીચેના છેડે નાનું તરંગ સ્પંદ દાખલ કરવામાં આવે છે.આ તરંગ- સ્પંદને ઉપર આધાર સુધી પહોંચવા માટે કેટલો સમય લાગશે? ( $g= 10 $ $ms^{-2}$ લો )
$2.06 \times 10^{4} \;\mathrm{N} $ તણાવવાળા સ્ટીલના તારમાં એક લંબગત તરંગ $v$ વેગથી ગતિ કરે છે. જ્યારે તણાવ $T$ થાય ત્યારે વેગ $\frac v2$ થાય તો ${T}$ નું મૂલ્ય કેટલું હશે?