A thin spherical shell is charged by some source. The potential difference between the two points $C$ and $P$ (in $V$) shown in the figure is:
(Take $\frac{1}{4 \pi \varepsilon_0}=9 \times 10^9$ $SI$ units)
$1 \times 10^5$
$0.5 \times 10^5$
Zero
$3 \times 10^5$
Electric charges having same magnitude of electricicharge $q$ coulombs are placed at $x=1 \,m , 2 \,m , 4 \,m$, $8 \,m$....... so on. If any two consecutive charges have opposite sign but the first charge is necessarily positive, what will be the potential at $x=0$ ?
$512$ identical drops of mercury are charged to a potential of $2\, V$ each. The drops are joined to form a single drop. The potential of this drop is ......... $V.$
At the centre of a half ring of radius $R=10 \mathrm{~cm}$ and linear charge density $4 \mathrm{n} \mathrm{C} \mathrm{m}^{-1}$, the potential is $x \pi V$. The value of $x$ is . . . . .
A spherical conductor of radius $2\,m$ is charged to a potential of $120\,V.$ It is now placed inside another hollow spherical conductor of radius $6\,m.$ Calculate the potential to which the bigger sphere would be raised......$V$
A conducting sphere of radius $R$ is given a charge $Q$. The electric potential and the electric field at the centre of the sphere respectively are