एक पतला गोलीय कोश किसी स्रोत द्वारा आवेशित किया गया है।प्रदर्शित चित्र के अनुसार दो बिन्दुओं $C$ व $P$ के बीच विभवान्तर (वोल्ट में) है:
(दिया है $\frac{1}{4 \pi \epsilon_0}=9 \times 10^9 \mathrm{SI}$ मात्रक में)
$1 \times 10^5$
$0.5 \times 10^5$
शून्य
$3 \times 10^5$
तांबे के गोलीय उदासीन कण की त्रिज्या $10 \,nm \left(1 \,nm =10^{-9} \,m \right)$ है। एक समय पर एक इलेक्ट्रॉन दे कर धीरे-धीरे इस कण पर विभव आरोपित करके आवेशित करते है। कण पर कुल आवेश तथा आरोपित विभव के मध्य आरेख निम्न होगा।
$125$ छोटी-छोटी पारे की बूँदों को मिलाकर एक बड़ी बूँद बनायी गयी है। इस पर विभव $2.5\, V$ है। प्रत्येक छोटी बूँद पर विभव .......$V$ होगा
$R$ त्रिज्या के एक खोखले धात्विक गोले को $Q$ आवेश दिया गया है। इसके केन्द्र पर विभव होगा
तीन संकेन्द्री धातु कोष $A, B$ तथा $C$ जिनकी त्रिज्यायें क्रमशः $a$, $b$ तथा $c(a< b< c)$ हैं, का पृष्ठ-आवेश-घनत्व क्रमश : $+\sigma$ $-\sigma$ तथा $+\sigma$ है। कोष $B$ का विभव होगा
एकसमान आवेश घनत्व वाले एक गोले की कल्पना कीजिए जिसका कुल आवेश Q तथा त्रिज्या $R$ है. इस गोले के अन्दर स्थिरवैद्युत विभव के वितरण को $\emptyset(r)=\frac{Q}{4 \pi \epsilon_0 R}\left(a+b(r / R)^c\right)$ से निरूपित किया गया है. मान लीजिये कि अनंत पर विभव शून्य है. इस आधार पर $(a$, $b, c)$ के मान क्या होंगे?