A spherical conductor of radius $2\,m$ is charged to a potential of $120\,V.$ It is now placed inside another hollow spherical conductor of radius $6\,m.$ Calculate the potential to which the bigger sphere would be raised......$V$

  • A

    $20$

  • B

    $60$

  • C

    $80$

  • D

    $40$

Similar Questions

$N$ identical spherical drops charged to the same potential $V$ are combined to form a big drop. The potential of the new drop will be

In a uniform electric field, the potential is $10$ $V $ at the origin of coordinates, and $8$ $V$ at each of the points $(1, 0, 0), (0, 1, 0) $ and $(0, 0, 1)$. The potential at the point $(1, 1, 1)$ will be....$V$

Charge is uniformly distributed on the surface of a hollow hemisphere. Let $O$ and $A$ be two points on the base of the hemisphere and $V_0$ and $V_A$ be the electric potentials at $O$ and $A$ respectively. Then,

Is electrostatic potential vector or scalar ?

Three concentric spherical shells have radii $a, b$ and $c (a < b < c)$ and have surface charge densities $\sigma ,-\;\sigma $ and $\;\sigma \;$ respectively. If  $V_A,V_B$ and $V_C$  denote the potentials of the three shells, then, for $c = a +b,$ we have

  • [AIPMT 2009]