Electric charges having same magnitude of electricicharge $q$ coulombs are placed at $x=1 \,m , 2 \,m , 4 \,m$, $8 \,m$....... so on. If any two consecutive charges have opposite sign but the first charge is necessarily positive, what will be the potential at $x=0$ ?
Infinity
Zero
$\frac{1}{4 \pi \varepsilon_0}\left(\frac{2 q}{3}\right)$
$\frac{1}{4 \pi \varepsilon_0}(2 q)$
A uniform electric field of $20\, N/C$ exists along the $x$ -axis in a space. The potential difference $(V_B -V_A)$ for the point $A(4\,m, 2\,m)$ and $B(6\,m, 5\,m)$ is.....$V$
Four charges of $1\ \mu C, 2\ \mu C, 3\ \mu C,$ and $- 6\ \mu C$ are placed one at each corner of the square of side $1\,m$. The square lies in the $x-y$ plane with its centre at the origin.
Equal charges are given to two spheres of different radii. The potential will
For given $\vec E = 2x\hat i + 3y\hat j$, find the potential at $(X, Y)$ if potential at origin is $5\, volts.$
A neutral spherical copper particle has a radius of $10 \,nm \left(1 \,nm =10^{-9} \,m \right)$. It gets charged by applying the voltage slowly adding one electron at a time. Then, the graph of the total charge on the particle versus the applied voltage would look like