त्रिज्या $r$ की एक पतले अर्द्ध-वृत्तीय वलय पर धनात्मक आवेश $q$ एकसमान रूप से वितरित है। केन्द्र $O$ पर परिणामी क्षेत्र $\overrightarrow{ E }$ है।
$\frac{q}{{2{\pi ^2}{\varepsilon _0}{r^2}}}\hat j\;\;\;\;\;\;\;\;$
$\;\frac{q}{{4{\pi ^2}{\varepsilon _0}{r^2}}}\hat j$
$-$$\;\frac{q}{{4{\pi ^2}{\varepsilon _0}{r^2}}}\hat j$
$-$$\;\frac{q}{{2{\pi ^2}{\varepsilon _0}{r^2}}}\hat j$
विद्युत क्षेत्र की तीव्रता का मात्रक है
$(a)$ किसी यादच्छिक स्थिर वैध्यूत क्षेत्र बिन्यास पर विचार कीजिए। इस विन्यास की किसी शून्य-विक्षेप स्थिति ( null-point, अर्थात् जहाँ $E =0$ ) पर कोई छोटा परीक्षण आवेश रखा गया है। यह दर्शाइए कि परीक्षण आवेश का संतुलन आवश्यक रूप से अस्थायी है।
$(b)$ इस परिणाम का समान परिमाण तथा चिह्नों के दो आवेशों (जो एक-दूसरे से किसी दूरी पर रखे हैं) के सरल विन्यास के लिए सत्यापन कीजिए।
हाइड्रोजन परमाणु में प्रोटॉन व इलेक्ट्रॉन के बीच की दूरी ${10^{ - 10}}$ मीटर है। इन दोनों पर आवेश का परिमाण $1.6 \times {10^{ - 19}}\,C$ है। प्रोटॉन के कारण इलेक्ट्रॉन पर उत्पé विद्युत क्षेत्र की तीव्रता का मान होगा
एक समषट्भुज के शीर्षों पर चित्रानुसार आवेश रखे गये हैं। इनमें से किस स्थिति में केन्द्र पर विद्युत क्षेत्र अशून्य है
त्रिज्या $R$ के एक एकसमान आवेशित वलय के विध्युत क्षेत्र का मान उसके अक्ष पर केंद्र से $h$ दूरी पर अधिकतम है। $h$ का मान होगा: