એક પાતળી અને $r$ ત્રિજ્યાની અર્ધવર્તુળાકાર રીંગ ઉપર $q$ જેટલો ધન વિદ્યુતભાર સમાન રીતે પથરાયેલો છે. રીંગના કેન્દ્ર $O$ પર વિદ્યુતક્ષેત્રની તીવ્રતા $\overrightarrow{ E }$ કેટલી હશે?
$\frac{q}{{2{\pi ^2}{\varepsilon _0}{r^2}}}\hat j\;\;\;\;\;\;\;\;$
$\;\frac{q}{{4{\pi ^2}{\varepsilon _0}{r^2}}}\hat j$
$-$$\;\frac{q}{{4{\pi ^2}{\varepsilon _0}{r^2}}}\hat j$
$-$$\;\frac{q}{{2{\pi ^2}{\varepsilon _0}{r^2}}}\hat j$
$M$ દળ અને $q$ વિજભાર $k$ દળ ધરાવતી સ્પ્રિંગ સાથે જોડાયેલ છે. $x = 0$ ને સમતોલન સ્થાન રાખીને તે $x-$દિશામાં $A$ કંપવિસ્તારથી દોલનો કરે છે,$x-$દિશામાં $E$ જેટલું વિદ્યુતક્ષેત્ર પ્રવર્તે છે. તો નીચેનામાંથી કયું વિધાન સાચું પડે?
$a$ ત્રિજ્યાનો હોલ ધરાવતી એક પાતળી તકતીની ત્રિજ્યા $b = 2a$ છે.જેના પર એકસમાન ક્ષેત્રિય વિજભાર ઘનતા $\sigma$ છે. જો તેના કેન્દ્રથી $h(h < < a)$ ઊંચાઈ પર વિદ્યુતક્ષેત્ર $Ch$ મુજબ આપવામાં આવે છે. તો $C$ કેટલો હશે?
ડ્યુટ્રોન અને $\alpha$ - કણ હવામાં એકબીજાથી $1\,\mathop A\limits^o $ અંતરે આવેલા છે. ડ્યુટ્રોનને લીધે $\alpha$ - કણ પર લાગતા વિદ્યુતક્ષેત્રનું મૂલ્ય ........ હશે.
$0.1 \,\mu m$ ત્રિજ્યાનો એક વિદ્યુતભારતીત પાણીનું ટીપુ વિદ્યુતક્ષેત્રની સંતુલન અવસ્થા હેઠળ આવેલ છે. ટીપા પરનો વિદ્યુતભાર ઈલેકટ્રોનીક્સ વિદ્યુતભારને સમતુલ્ય છે. વિદ્યુતક્ષેત્રની તીવ્રતા ........$N/C$ છે.
$L=20\, cm$ લંબાઈ ધરાવતા તારમાંથી અર્ધવર્તુળાકાર ચાપ બનાવવામાં આવે છે.જો ચાપના સમાન બે અડધા ભાગમાં એકસમાન રીતે $+Q$ અને $-Q$ $\left[ {\left| Q \right| = {{10}^3}{\varepsilon _0}} \right]$ કુલંબ વિજભાર પથરાયેલો છે.[જ્યાં $\varepsilon _0$ એ શૂન્યાવકાશની પરમિટિવિટી ($SI$એકમમાં)] અર્ધવર્તુળાકાર ચાપના કેન્દ્ર પાસે કુલ વિદ્યુતક્ષેત્ર કેટલું મળે?