A thin infinite sheet charge and an infinite line charge of respective charge densities $+\sigma$ and $+\lambda$ are placed parallel at $5\,m$ distance from each other. Points $P$ and $Q$, are at $\frac{3}{\pi} m$ and $\frac{4}{\pi} m$ perpendicular distance from line charge towards sheet charge, respectively. $E_P$ and $E_Q$ are the magnitudes of resultant electric field intensities at point $P$ and $Q$, respectively. If $\frac{E_p}{E_Q}=\frac{4}{a}$ for $2|\sigma|=|\lambda|$. Then the value of $a$ is ...........
$3$
$9$
$6$
$12$
According to Gauss’ Theorem, electric field of an infinitely long straight wire is proportional to
Electric field intensity at a point in between two parallel sheets with like charges of same surface charge densities $(\sigma )$ is
Obtain the expression of electric field by charged spherical shell on a point outside it.
A spherical conductor of radius $10\, cm$ has a charge of $3.2 \times 10^{-7} \,C$ distributed uniformly. What is the magnitude of electric field at a point $15 \,cm$ from the centre of the sphere?
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} Nm ^{2} / C ^{2}\right)$
At a point $20\, cm$ from the centre of a uniformly charged dielectric sphere of radius $10\, cm$, the electric field is $100\, V/m$. The electric field at $3\, cm$ from the centre of the sphere will be.......$V/m$