In an isosceles triangle $ABC, \angle C = \angle A$ if point of intersection of bisectors of internal angles $\angle A$ and $\angle C$ divide median of side $AC$ in $3 : 1$ (from vertex $B$ to side $AC$), then value of $cosec \ \frac{B}{2}$ is equal to
$1$
$2$
$3$
$4$
The circumcentre of a triangle lies at the origin and its centroid is the mid point of the line segment joining the points $(a^2 + 1 , a^2 + 1 )$ and $(2a, - 2a)$, $a \ne 0$. Then for any $a$ , the orthocentre of this triangle lies on the line
If the straight lines $x + 3y = 4,\,\,3x + y = 4$ and $x +y = 0$ form a triangle, then the triangle is
Draw a quadrilateral in the Cartesian plane, whose vertices are $(-4,5),(0,7) (5,-5)$ and $(-4,-2) .$ Also, find its area.
If the equation of the locus of a point equidistant from the points $({a_1},{b_1})$ and $({a_2},{b_2})$ is $({a_1} - {a_2})x + ({b_1} - {b_2})y + c = 0$, then the value of $‘c’$ is
Let the equations of two adjacent sides of a parallelogram $A B C D$ be $2 x-3 y=-23$ and $5 x+4 y$ $=23$. If the equation of its one diagonal $AC$ is $3 x +$ $7 y=23$ and the distance of A from the other diagonal is $d$, then $50 d ^2$ is equal to $........$.