આકૃતિમાં દર્શાવ્યા પ્રમાણે અંદરની ત્રિજયા $a$ અને બહારની ત્રિજયા $b$ ધરાવતા ગોળીય કવચની અંદર $R$ ત્રિજયા અને $q$ વિદ્યુતભાર ધરાવતો ધાતુનો ગોળો છે. તો વિદ્યુતક્ષેત્ર $\overrightarrow{{E}}$ વિરુદ્ધ તેના કેન્દ્ર $O$ થી અંતર $r$ સાથેનો ગ્રાફ લગભગ કેવો મળશે?
$R$ ત્રિજયાના ગોળીય કવચમાં કેન્દ્રથી અંતર નો વિદ્યુતક્ષેત્ર $E$ વિરુધ્ધનો આલેખ કેવો થાય?
$\rho(r)=\left\{\begin{array}{ll}\rho_{0}\left(\frac{3}{4}-\frac{r}{R}\right) & \text { for } r \leq R \\ \text { Zero } & \text { for } r>R\end{array}\right.$
અનુસાર બદલાતી ગોલીય સંમિત વિદ્યુતભાર વહેંચણી વિચારો,જ્યાં $r ( r < R )$ એ કેન્દ્રથી અંતર છે (આકૃતિ જુઓ) $P$ બિંદુ આગળ વિદ્યુતક્ષેત્ર $......$ હશે.
$R$ ત્રિજયાના ગોળાના કેન્દ્રથી અંતર નો વિદ્યુતક્ષેત્ર $E$ વિરુધ્ધનો આલેખ કેવો થાય?
$R$ ત્રિજયાનો નકકર ગોળા પર સમાન રીતે વિદ્યુતભાર ફેલાયેલો છે.તો વિદ્યુતક્ષેત્ર $(E)$ અને કેન્દ્રથી અંતર $r$ વચ્ચેનો સંબંધ શું થાય? (r < R)
રેખીય વિદ્યુતભાર ઘનતા $\lambda$ ધરાવતો એક લાંબો નળાકાર એક પોલા, સમઅક્ષીય, સુવાહક નળાકાર વડે ઘેરાયેલ છે. બે નળાકારની વચ્ચેના અવકાશમાં વિદ્યુતક્ષેત્ર કેટલું હશે?