$15$ સેમી લંબાઈનો સળિયો $AB$ યામાક્ષો પર એ રીતે મૂકેલ છે કે અંત્યબિંદુ $A$ $x-$ અક્ષ પર અને $B$ $y -$ અક્ષ પર રહે. સળિયા પર $ P(x, y)$ બિંદુ એ રીતે લીધેલ છે કે $AP = 6$ સેમી હોય. સાબિત કરો કે $P$ નો બિંદુગણ ઉપવલય છે. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $AB$ be the rod making an angle $\theta $ with $OX$ as shown in Fig. and $P (x, \,y)$ the point on it such that   $AP =6\, cm$

since        $AB =15\,cm ,$   we have

                $P B=9\, cm$

From $P$ draw $PQ$ and $PR$ perpendiculars on $y-$ axis and $x-$ axis, respectively.

From           $\Delta PBQ$ ,     $\cos \theta=\frac{x}{9}$

From           $\Delta PRA$,    $\sin \theta=\frac{y}{6}$

since $\cos ^{2} \theta+\sin ^{2} \theta=1$

$\left(\frac{x}{9}\right)^{2}+\left(\frac{y}{6}\right)^{2}=1$

or         $\frac{x^{2}}{81}+\frac{y^{2}}{36}=1$

Thus the locus of $P$ is an cllipse.

874-s82

Similar Questions

ઉપવલય ${x^2} + 3{y^2} = 6$ ના સ્પર્શક પર આ ઉપવલયના કેન્દ્રમાંથી દોરેલા લંબપાદનો બિંદુપથ મેળવો.

  • [JEE MAIN 2014]

ઉગમબિંદુમાંથી પસાર થતા અને બિંદુઓ $(1, 0)$ અને $(3, 0)$ આગળ નાભિઓ ધરાવતા ઉપવલયનું સમીકરણ .....

જો $\frac{x}{a}\,\, + \;\,\frac{y}{b}\,\, = \,\,\sqrt 2 $ ઉપવલય  $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$ ને સ્પર્શે, તો તેનો ઉત્કેન્દ્રીકોણ (Eccentric Angle) $\,\theta \,\, = \,\, ............ $ $^o$

ઉપવલય $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ પરના કોઇ બિંદુથી દોરવામાં આવેલ સ્પર્શકે અક્ષો પર બનાવેલ ત્રિકોણનું ન્યૂનતમ ક્ષેત્રફળ  . . . .  થાય.   

  • [IIT 2005]

આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ  પ્રધાન અક્ષની લંબાઈ $16$, નાભિઓ $(0,\,±6)$