A rod $AB$ of length $15\,cm$ rests in between two coordinate axes in such a way that the end point A lies on $x-$ axis and end point $B$ lies on $y-$ axis. A point $P(x,\, y)$ is taken on the rod in such a way that $AP =6\, cm .$ Show that the locus of $P$ is an ellipse.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $AB$ be the rod making an angle $\theta $ with $OX$ as shown in Fig. and $P (x, \,y)$ the point on it such that   $AP =6\, cm$

since        $AB =15\,cm ,$   we have

                $P B=9\, cm$

From $P$ draw $PQ$ and $PR$ perpendiculars on $y-$ axis and $x-$ axis, respectively.

From           $\Delta PBQ$ ,     $\cos \theta=\frac{x}{9}$

From           $\Delta PRA$,    $\sin \theta=\frac{y}{6}$

since $\cos ^{2} \theta+\sin ^{2} \theta=1$

$\left(\frac{x}{9}\right)^{2}+\left(\frac{y}{6}\right)^{2}=1$

or         $\frac{x^{2}}{81}+\frac{y^{2}}{36}=1$

Thus the locus of $P$ is an cllipse.

874-s82

Similar Questions

Let the eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$, be $\frac{1}{4}$. If this ellipse passes through the point $\left(-4 \sqrt{\frac{2}{5}}, 3\right)$, then $a^{2}+b^{2}$ is equal to

  • [JEE MAIN 2022]

If $ \tan\  \theta _1. tan \theta _2 $ $= -\frac{{{a^2}}}{{{b^2}}}$  then the chord joining two points $\theta _1 \& \theta _2$  on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $= 1$  will subtend a right angle at :

The length of the minor axis (along $y-$axis) of an ellipse in the standard form is $\frac{4}{\sqrt{3}} .$ If this ellipse touches the line, $x+6 y=8 ;$ then its eccentricity is

  • [JEE MAIN 2020]

Equation of the ellipse with eccentricity $\frac{1}{2}$ and foci at $( \pm 1,\;0)$ is

Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(b < a)$, be a ellipse with major axis $A B$ and minor axis $C D$. Let $F_1$ and $F_2$ be its two foci, with $A, F_1, F_2, B$ in that order on the segment $A B$. Suppose $\angle F_1 C B=90^{\circ}$. The eccentricity of the ellipse is

  • [KVPY 2020]