વાસ્તવિક વિધેય $f(x)$ એ સમીકરણ $f(x - y) = f(x)f(y) - f(a - x)f(a + y)$ નું પાલન કરે છે જ્યાં $a$ એ અચળ છે અને $f(0) = 1$, $f(2a - x) = . ...$

  • [AIEEE 2005]
  • A

    $f(a) + f(a - x)$

  • B

    $f( - x)$

  • C

    $ - f(x)$

  • D

    $f(x)$

Similar Questions

જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
{\,{x^3} - {x^2} + 10x - 5\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \le 1\,\,\,\,\,\,\,\,\,\,\,\,}\\
{ - 2x + {{\log }_2}({b^2} - 2),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\, > 1\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}} \right.$ હોય તો $b$ ની કઇ કિમતો માટે $f(x)$ ની $x = 1$ મહત્તમ કિમત મળે

વિધેય $f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}$ નો પ્રદેશ $...........$ છે.

(જ્યાં [x] એ $\leq x$ અથવા તેનાથી નાનો મહત્તમ પૂર્ણાક દર્શાવે છે.)

  • [JEE MAIN 2023]

વિધેય $\mathrm{f}(\mathrm{x})=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}-\mathrm{x}\right)$

$-\cos \left(\frac{3 \pi}{4}-\mathrm{x}\right))$ નો વિસ્તાર મેળવો.

  • [JEE MAIN 2021]

$f(x) = sin^{-1} (\sqrt {x^2 + x +1})$ નો વિસ્તારગણ .......... થાય

ધારોકે $[t]$ એ $t$ અથવા તેનાથી નાનો મહ્તમ પૂર્ણાંક છે. ધારોકે $A$ એ $2310$ ના બધા અવિભાજ્ય અવયવોનો ગણ છે અને $f: A \rightarrow \mathbb{Z}$ એ વિધેય $f(x)=\left[\log _2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$ છે. $A$ થી $f$ નાં વિસ્તાર પરના એક-એક વિધેયોની સંખ્યા ............ છે.

  • [JEE MAIN 2024]