एक वास्तविक फलन $f(x)$, $f(x - y) = f(x)f(y) - f(a - x)f(a + y)$ फलन समीकरण को संतुष्ट करता है, यहाँ $a$ दिया गया अचर है व $f(0) = 1$, तब $f(2a - x) = $

  • [AIEEE 2005]
  • A

    $f(a) + f(a - x)$

  • B

    $f( - x)$

  • C

    $ - f(x)$

  • D

    $f(x)$

Similar Questions

सिद्ध कीजिए कि $f(x)=|x|$ द्वारा प्रद्त मापांक फलन $f: R \rightarrow R$, न तो एकेकी है और न आच्छादक है, जहाँ $|x|$ बराबर $x$, यदि $x$ धन या शून्य है तथा $|x|$ बराबर $-x$, यदि $x$ रुण है।

यदि बहुपद $p(x)=4 x^3-3 x$, में $x$ का मान $\left(-\frac{1}{2}, \frac{1}{2}\right)$ अन्तराल में हो तो बहुपद का परास $(range)$ निम्न में से कौन सा है?

  • [KVPY 2016]

फलन $f(x) = \frac{{{{\sin }^{ - 1}}(3 - x)}}{{\ln (|x|\; - 2)}}$ का डोमेन (प्रान्त) है

यादि $f(x) = \frac{x}{{x - 1}}$, तब $\frac{{f(a)}}{{f(a + 1)}} = $

एक फलन $f$ सभी धनात्मक पूर्णांक संख्याओं के समुच्चय के लिए इस प्रकार परिभाषित है: $f(x y)=f(x)+f(y)$, जहाँ $x$ और $y$ धनात्मक है. यदि $f(12)=24$ तथा $f(8)=15$ है, तो $f(48)$ का मान होगा

  • [KVPY 2016]