कोई भौतिक राशि $P$. चार प्रेक्षण-योग्य राशियों $a.b . c$ तथा $d$ से इस प्रकार संबधित है | $P \quad a^{3} b^{2} / \sqrt{c} d$ $a, b, c$ तथा $d$ के मापने में प्रतिशत त्रुटियां क्रमश: $1 \% .3 \% .4 \% .$ तथा $2 \% .$ हैं । राशि $P$ में प्रतिशत त्रुटि कितनी है ? यदि उपर्युक्त संबंध का उपयोग करके $P$ का परिकलित मान $3.763$ आता है, तो आप परिणाम का किस मान तक निकटन करेंगे ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$P=\frac{a^{3} b^{2}}{(\sqrt{c} d)}$

$\frac{\Delta P}{P}=\frac{3 \Delta a}{a}+\frac{2 \Delta b}{b}+\frac{1}{2} \frac{\Delta c}{c}+\frac{\Delta d}{d}$

$\left(\frac{\Delta P}{P} \times 100\right) \%$$=\left(3 \times \frac{\Delta a}{a} \times 100+2 \times \frac{\Delta b}{b} \times 100+\frac{1}{2} \times \frac{\Delta c}{c} \times 100+\frac{\Delta d}{d} \times 100\right) \%$

$=3 \times 1+2 \times 3+\frac{1}{2} \times 4+2$

$=3+6+2+2=13 \%$

Percentage error in $P=13 \%$

Value of $P$ is given as $3.763$

By rounding off the given value to the first decimal place, we get $P=3.8$

Similar Questions

एक पिण्ड का द्रव्यमान $22.42$ ग्राम तथा आयतन $4.7$ घन सेमी है। इसके मापन में $0.01$ ग्राम तथा $0.1$ घन सेमी की त्रुटि है, तो घनत्व में अधिकतम त्रुटि होगी

  • [AIPMT 1991]

द्रव्यमान तथा चाल के मापन से प्राप्त द्रव्यमान तथा चाल में प्रतिशत त्रुटियाँ क्रमश: $2\%$ तथा $3\%$ हैं। गतिज ऊर्जा की गणना में अधिकतम त्रुटि ......... $\%$ होगी

  • [AIPMT 1995]

प्रयोगशाला में एक विद्यार्थी स्क्रूगेज द्वारा तार की मौटाई मापता है। पाट्यांक $1.22\,mm , 1.23\,mm$, $1.19\,mm$ तथा $1.20\,mm$ है। यदि प्रतिशत त्रुटि $\frac{ x }{121} \%$ तो $x$ का मान ज्ञात कीजिये।

  • [JEE MAIN 2022]

यदि सभी स्वतंत्र राशियों (independent quantities) की मापन न्रुटियाँ (measurement errors) ज्ञात हो, तो किसी निर्भर राशि (dependent quantity) की न्रुटि का परिकलन (calculation) किया जा सकता है। इस परिकलन में श्रेणी प्रसार (series expansion) का प्रयोग किया जाता है और इस प्रसार को न्रुटि (error) के पहले घात (first power) पर रून्डित (truncate) किया जाता है। उदाहरण स्वरूप, सम्बन्ध $z=x / y$ में यदि $x, y$ और $z$ की त्रुटियाँ क्रमशः $\Delta x, \Delta y$ और $\Delta z$ हों, तो

$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$

$\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$ का श्रेणी प्रसार, $\Delta y / y$ में पहले घात तक, $1 \mp(\Delta y / y)$ है। स्वतंत्र राशियों की आपेक्षिक त्रुटियाँ (relative errors) सदैव जोड़ी जाती हैं। इसलिए $z$ की त्रुटि होगी

$\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) .$

उपरोक्त परिकलन में $\Delta x / x \ll 1, \Delta y / y \ll 1$ माने गये हैं। इसलिए इन राशियों की उच्चतर घातें (higher powers) उपेक्षित हैं।

($1$) एक विमा-रहित (dimensionless) राशि $a$ को माप कर, एक अनुपात (ratio) $r=\frac{(1-a)}{(1+a)}$ का परिकलन करना है। यदि $a$ की मापन की त्रुटि $\Delta a$ है ( $\Delta a / a \ll 1)$, तो $r$ के परिकलन की त्रुटि $\Delta r$ क्या होगी?

$(A)$ $\frac{\Delta a }{(1+ a )^2}$  $(B)$ $\frac{2 \Delta a }{(1+ a )^2}$  $(C)$ $\frac{2 \Delta a}{\left(1-a^2\right)}$  $(D)$ $\frac{2 a \Delta a}{\left(1-a^2\right)}$

($2$) एक प्रयोग के आरंभ में रेडियोएक्टिव नाभिकों की संख्या $3000$ है। प्रयोग के पहले $1.0$ सेकंड में $1000 \pm 40$ नाभिकों का क्षय हो जाता है। यदि $|x| \ll 1$ हो, तो $x$ के पहले घात तक $\ln (1+x)=x$ है। क्षयांक (decay constant) $\lambda$ के निर्धारण में त्रुटि $\Delta \lambda, s^{-1}$ में, हैtion of the decay constant $\lambda$, in $s ^{-1}$, is

$(A) 0.04$  $(B) 0.03$  $(C) 0.02$  $(D) 0.01$

इस प्रश्न के उतर दीजिये $1$ ओर $2.$

  • [IIT 2018]

यदि वस्तु नियत चाल से $(4.0 \pm 0.3)$  में $ (13.8 \pm 0.2) m$ की दूरी तय करती है। त्रुटि की सीमाओं के भीतर वस्तु का वेग होगा