A physical quantity $P$ is related to four observables $a, b, c$ and $d$ as follows: $P=\frac{a^{2} b^{2}}{(\sqrt{c} d)}$ The percentage errors of measurement in $a, b, c$ and $d$ are $1 \%, 3 \%, 4 \%$ and $2 \%$ respectively. What is the percentage error in the quantity $P$ ? If the value of $P$ calculated using the above relation turns out to be $3.763,$ to what value should you round off the result?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$P=\frac{a^{3} b^{2}}{(\sqrt{c} d)}$

$\frac{\Delta P}{P}=\frac{3 \Delta a}{a}+\frac{2 \Delta b}{b}+\frac{1}{2} \frac{\Delta c}{c}+\frac{\Delta d}{d}$

$\left(\frac{\Delta P}{P} \times 100\right) \% $ $=\left(3 \times \frac{\Delta a}{a} \times 100+2 \times \frac{\Delta b}{b} \times 100+\frac{1}{2} \times \frac{\Delta c}{c} \times 100+\frac{\Delta d}{d} \times 100\right) \%$

$=3 \times 1+2 \times 3+\frac{1}{2} \times 4+2$

$=3+6+2+2=13 \%$

Percentage error in $P=13 \%$

Value of $P$ is given as $3.763$

By rounding off the given value to the first decimal place, we get $P=3.8$

Similar Questions

Can error be completely eliminated ?

A physical quantity $y$ is represented by the formula $y=m^{2}\, r^{-4}\, g^{x}\,l^{-\frac{3}{2}}$. If the percentage error found in $y, m, r, l$ and $g$ are $18,1,0.5,4$ and $p$ respectively, then find the value of $x$ and $p$.

  • [JEE MAIN 2021]

Time intervals measured by a clock give the following readings : 

$1.25 \;s , 1.24\; s , 1.27\; s , 1.21 \;s$ and $1.28\; s$ 

What is the percentage relative error of the observations?

  • [NEET 2020]

The length and breadth of a rectangle are $(5.7 \pm 0.1) cm$ and $(3.4 \pm 0.2) cm$, respectively. Calculate the area of rectangle with error limits.

If the error in the measurement of radius of a sphere is $2\%$ then the error in the determination of volume of the sphere will be ........ $\%$

  • [AIPMT 2008]