Show that $a \cdot( b \times c )$ is equal in magnitude to the volume of the parallelepiped formed on the three vectors, $a, b$ and $c$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Volume of the given parallelepiped $=a b c$

$\overrightarrow{ OC }=\vec{a}$

$\overrightarrow{ OB }=\vec{b}$

$\overrightarrow{ OC }=\vec{c}$

Let $\hat{ n }$ be a unit vector perpendicular to both $b$ and $c .$ Hence, $\quad \hat{ n }$ and $a$ have the same direction. $\therefore \vec{b} \times \vec{c}=b c \sin \theta \hat{ n }$

$=b c \sin 90^{\circ} \hat{ n }$

$=b c \hat{n}$

$\vec{a} \cdot(\vec{b} \times \vec{c})$

$=a \cdot(b c \hat{ n })$

$=a b c \cos \theta \hat{ n }$

$=a b c \cos 0^{\circ}$

$=a b c$

$=$ Volume of the parallelepiped

888-s21

Similar Questions

Find angle between $\vec A = 3\hat i - \hat j + 4\hat k$ and $Z-$ axis

Force $F$ applied on a body is written as $F =(\hat{ n } \cdot F ) \hat{ n }+ G$, where $\hat{ n }$ is a unit vector. The vector $G$ is equal to

  • [KVPY 2017]

The values of $x$ and $y$ for which vectors $\vec A = \left( {6\hat i + x\hat j - 2\hat k} \right)$ and $\vec B = \left( {5\hat i - 6\hat j - y\hat k} \right)$ may be parallel are

The area of the triangle formed by $2\hat i + \hat j - \hat k$ and $\hat i + \hat j + \hat k$ is

Why the product of two vectors is not commutative ?