Show that $a \cdot( b \times c )$ is equal in magnitude to the volume of the parallelepiped formed on the three vectors, $a, b$ and $c$.
Volume of the given parallelepiped $=a b c$
$\overrightarrow{ OC }=\vec{a}$
$\overrightarrow{ OB }=\vec{b}$
$\overrightarrow{ OC }=\vec{c}$
Let $\hat{ n }$ be a unit vector perpendicular to both $b$ and $c .$ Hence, $\quad \hat{ n }$ and $a$ have the same direction. $\therefore \vec{b} \times \vec{c}=b c \sin \theta \hat{ n }$
$=b c \sin 90^{\circ} \hat{ n }$
$=b c \hat{n}$
$\vec{a} \cdot(\vec{b} \times \vec{c})$
$=a \cdot(b c \hat{ n })$
$=a b c \cos \theta \hat{ n }$
$=a b c \cos 0^{\circ}$
$=a b c$
$=$ Volume of the parallelepiped
Find angle between $\vec A = 3\hat i - \hat j + 4\hat k$ and $Z-$ axis
Force $F$ applied on a body is written as $F =(\hat{ n } \cdot F ) \hat{ n }+ G$, where $\hat{ n }$ is a unit vector. The vector $G$ is equal to
The area of the triangle formed by $2\hat i + \hat j - \hat k$ and $\hat i + \hat j + \hat k$ is
Why the product of two vectors is not commutative ?