अपने चुम्बकीय अक्ष के सापेक्ष एक न्यूट्रॉन तारा (neutron star), जिसके चुम्बकीय आघूर्ण (magnetic moment) का मान $m$ है, $\omega$ कोणीय वेग से घूम रहा है। यह तारा विद्युत चुम्बकीय शक्ति $P =\mu_0^x m^y \omega^z c^u$ उत्सर्जित करता है, जहाँ $\mu_0$ और $c$ निर्वात की पारगम्यता (permeability) एव निर्वात में प्रकाश की चाल है। तब इनमें से कौन सा उत्तर सही है ?

  • [KVPY 2017]
  • A

    $x=1, y=2, z=4$ और $u=-3$

  • B

    $x=1, y=2, z=4$ और $u=3$

  • C

    $x=-1, y=2, z=4$ और $u=-3$

  • D

    $x=-1, y=2, z=4$ और $u=3$

Similar Questions

यदि द्रव्यमान, लम्बाई और समय के स्थान पर समय $( T )$, वेग $( C )$ तथा कोणीय संवेग $( h )$ को मूलभूत राशियाँ मान लें तो द्रव्यमान की विमा को इन राशियों के रूप में निम्न तरीके से लिखेंगे

  • [JEE MAIN 2017]

कुछ गैसों की अवस्था की समीकरण $\left(P+\frac{a}{V^2}\right)$ $(V-b)=R T$ से प्रदर्शित होती है, जहाँ $P$ दाब, $\mathrm{V}$ आयतन, $\mathrm{T}$ ताप तथा $a, b, R$ नियतांक हैं। $\frac{b^2}{a}$ के समतुल्य विमीय सूत्र वाली भौतिक राशि होगी:

  • [JEE MAIN 2023]

यदि द्रव्यमान को $\mathrm{m}=\mathrm{k} \mathrm{c}^{\mathrm{p}} \mathrm{G}^{-1 / 2} \mathrm{~h}^{1 / 2}$ लिखा गया हो तो $\mathrm{P}$ मान होगा: (जब नियतांक अपना सामान्य अर्थ दर्शाते है तथा $\mathrm{k}$ एक विमाविहीन नियतांक है)

  • [JEE MAIN 2024]

सूत्र $X = 3Y{Z^2}$ में $X$ और $Z$ क्रमश: धारिता और चुम्बकीय क्षेत्र की विमायें हैं। $MKSQ$ पद्धति में $Y$ की विमायें हैं

  • [AIIMS 2017]

कभी-कभी मात्रकों की एक पद्धति का निर्माण करना सुविधाजनक होता है ताकि सभी राशियों को केवल एक भौतिक राशि के पदों में व्यक्त किया जा सके। इस प्रकार की पद्धति में, विभिन्न राशियों की विमाओं को राशि $X$ के पदों में निम्नानुसार दिया गया है: $[$ स्थिति $]=\left[ X ^{ \alpha }\right]$; [चाल $]=\left[ X ^\beta\right]$; [त्वरण $]=\left[ X ^{ p }\right]$; [रेखीय संवेग $]=\left[ X ^{ q }\right] ;[$ बल $]=\left[ X ^{ R }\right]$ । तब

$(A)$ $\alpha+ p =2 \beta$

$(B)$ $p + q - r =\beta$

$(C)$ $p - q + r =\alpha$

$(D)$ $p+q+r=\beta$

  • [IIT 2020]