A mass $m = 20\,g$ has a charge $q = 3.0\,mC$. It moves with a velocity of $20\,m/s$ and enters a region of electric field of $80\,N/C$ in the same direction as the velocity of the mass. The velocity of the mass after $3$ seconds in this region is.......$m/s$

  • A

    $80$

  • B

    $56$

  • C

    $44$

  • D

    $40$

Similar Questions

A uniform vertical electric field $E$ is established in the space between two large parallel  plates. A small conducting sphere of mass $m$ is suspended in the field from a string of  length $L$. If the sphere is given $a + q$ charge and the lower plate is charged positvely, the period of oscillation of this pendulum is :- 

An electron falls through a small distance in a uniform electric field of magnitude $2 \times {10^4}N{C^{ - 1}}$. The direction of the field is reversed keeping the magnitude unchanged and a proton falls through the same distance. The time of fall will be

A particle of mass $m$ and charge $(-q)$ enters the region between the two charged plates initially moving along $x$ -axis with speed $v_{x}$ (like particle $1$ in Figure). The length of plate is $L$ and an uniform electric field $E$ is maintained between the plates. Show that the vertical deflection of the particle at the far edge of the plate is $q E L^{2} /\left(2 m v_{x}^{2}\right)$

Compare this motion with motion of a projectile in gravitational field

A particle of charge $1\  \mu C\  \&\  mass$ $1\  gm$ moving with a velocity of $4\  m/s$ is subjected to a uniform electric field of magnitude $300\  V/m$ for $10\  sec$. Then it's final speed cannot be.......$m/s$

A uniform electric field $\vec E$ exists between the plates of a charged condenser. A charged particle enters the space between the plates and perpendicular to $\vec E$ . The path of the particle between the plates is a

  • [JEE MAIN 2013]