An electron falls through a small distance in a uniform electric field of magnitude $2 \times {10^4}N{C^{ - 1}}$. The direction of the field is reversed keeping the magnitude unchanged and a proton falls through the same distance. The time of fall will be

  • A

    Same in both cases

  • B

    More in the case of an electron

  • C

    More in the case of proton

  • D

    Independent of charge

Similar Questions

A uniform vertical electric field $E$ is established in the space between two large parallel  plates. A small conducting sphere of mass $m$ is suspended in the field from a string of  length $L$. If the sphere is given $a + q$ charge and the lower plate is charged positvely, the period of oscillation of this pendulum is :- 

A stream of a positively charged particles having $\frac{ q }{ m }=2 \times 10^{11} \frac{ C }{ kg }$ and velocity $\overrightarrow{ v }_0=3 \times 10^7 \hat{ i ~ m} / s$ is deflected by an electric field $1.8 \hat{ j } kV / m$. The electric field exists in a region of $10 cm$ along $x$ direction. Due to the electric field, the deflection of the charge particles in the $y$ direction is $...........mm$

  • [JEE MAIN 2023]

A small point mass carrying some positive charge on it, is released from the edge of a table. There is a uniform electric field in this region in the horizontal direction. Which of the following options then correctly describe the trajectory of the mass ? (Curves are drawn schematically and are not to scale).

  • [JEE MAIN 2020]

A positive charge particle of $100 \,mg$ is thrown in opposite direction to a uniform electric field of strength $1 \times 10^{5} \,NC ^{-1}$. If the charge on the particle is $40 \,\mu C$ and the initial velocity is $200 \,ms ^{-1}$, how much distance (in $m$) it will travel before coming to the rest momentarily

  • [JEE MAIN 2022]

A proton and an $\alpha$-particle having equal kinetic energy are projected in a uniform transverse electric field as shown in figure