Cathode rays travelling from east to west enter into region of electric field directed towards north to south in the plane of paper. The deflection of cathode rays is towards
East
South
West
North
An electric line of force in $X$, $Y-$ plane is given by $x^2+y^2 = 1$. A particle with unit positive charge, initially at rest at the point $x = 1, y = 0$ in the $X, Y-$ plane
Four point $+ve$ charges of same magnitude $(Q)$ are placed at four corners of a rigid square frame as shown in figure. The plane of the frame is perpendicular to $Z-$ axis. If a $ -ve$ point charge is placed at a distance $z$ away from centre along axis $(z << L )$ then
An electron enters a parallel plate capacitor with horizontal speed $u$ and is found to deflect by angle $\theta$ on leaving the capacitor as shown below. It is found that $\tan \theta=0.4$ and gravity is negligible. If the initial horizontal speed is doubled, then the value of $\tan \theta$ will be
A uniform electric field, $\vec{E}=-400 \sqrt{3} \hat{y} NC ^{-1}$ is applied in a region. A charged particle of mass $m$ carrying positive charge $q$ is projected in this region with an initial speed of $2 \sqrt{10} \times 10^6 ms ^{-1}$. This particle is aimed to hit a target $T$, which is $5 m$ away from its entry point into the field as shown schematically in the figure. Take $\frac{ q }{ m }=10^{10} Ckg ^{-1}$. Then-
$(A)$ the particle will hit $T$ if projected at an angle $45^{\circ}$ from the horizontal
$(B)$ the particle will hit $T$ if projected either at an angle $30^{\circ}$ or $60^{\circ}$ from the horizontal
$(C)$ time taken by the particle to hit $T$ could be $\sqrt{\frac{5}{6}} \mu s$ as well as $\sqrt{\frac{5}{2}} \mu s$
$(D)$ time taken by the particle to hit $T$ is $\sqrt{\frac{5}{3}} \mu s$
A charged particle of mass $m$ and charge $q$ is released from rest in a uniform electric field $E.$ Neglecting the effect of gravity, the kinetic energy of the charged particle after ‘$t$’ second is