An electron and a proton are in a uniform electric field, the ratio of their accelerations will be
Zero
Unity
The ratio of the masses of proton and electron
The ratio of the masses of electron and proton
An electron falls through a distance of $1.5\; cm$ in a uniform electric field of magnitude $2.0 \times 10^{4} \;N C ^{-1} \text {[Figure (a)]} .$ The direction of the field is reversed keeping its magnitude unchanged and a proton falls through the same distance [Figure $(b)] .$ Compute the time of fall in each case. Contrast the situation with that of 'free fall under gravity'.
A simple pendulum is suspended in a lift which is going up with an acceleration $5\ m/s^2$. An electric field of magnitude $5 \ N/C$ and directed vertically upward is also present in the lift. The charge of the bob is $1\ mC$ and mass is $1\ mg$. Taking $g = \pi^2$ and length of the simple pendulum $1\ m$, the time period of the simple pendulum is ......$s$
A stream of a positively charged particles having $\frac{ q }{ m }=2 \times 10^{11} \frac{ C }{ kg }$ and velocity $\overrightarrow{ v }_0=3 \times 10^7 \hat{ i ~ m} / s$ is deflected by an electric field $1.8 \hat{ j } kV / m$. The electric field exists in a region of $10 cm$ along $x$ direction. Due to the electric field, the deflection of the charge particles in the $y$ direction is $...........mm$
A uniform electric field, $\vec{E}=-400 \sqrt{3} \hat{y} NC ^{-1}$ is applied in a region. A charged particle of mass $m$ carrying positive charge $q$ is projected in this region with an initial speed of $2 \sqrt{10} \times 10^6 ms ^{-1}$. This particle is aimed to hit a target $T$, which is $5 m$ away from its entry point into the field as shown schematically in the figure. Take $\frac{ q }{ m }=10^{10} Ckg ^{-1}$. Then-
$(A)$ the particle will hit $T$ if projected at an angle $45^{\circ}$ from the horizontal
$(B)$ the particle will hit $T$ if projected either at an angle $30^{\circ}$ or $60^{\circ}$ from the horizontal
$(C)$ time taken by the particle to hit $T$ could be $\sqrt{\frac{5}{6}} \mu s$ as well as $\sqrt{\frac{5}{2}} \mu s$
$(D)$ time taken by the particle to hit $T$ is $\sqrt{\frac{5}{3}} \mu s$
A mass $m = 20\,g$ has a charge $q = 3.0\,mC$. It moves with a velocity of $20\,m/s$ and enters a region of electric field of $80\,N/C$ in the same direction as the velocity of the mass. The velocity of the mass after $3$ seconds in this region is.......$m/s$