पूर्ण रुप से बर्फ से ढ़के हुए तालाब पर बर्फ की चिकनी सतह के ठीक मध्य में एक व्यक्ति खड़ा है। वह किनारे पर निम्न में से न्यूटन के किस नियम के आधार पर आ सकता है
प्रथम नियम
द्वितीय नियम
तृतीय नियम
तीनों नियमों से
$m$ द्रव्यमान का एक कण $u$ वेग से $m$ द्रव्यमान के एक अन्य स्थिर कण से एक विमीय प्रत्यास्थ संघट्ट करता है, तथा संघट्ट के पश्चात् दोनों कण अल्प समय $T$ तक परस्पर संपर्क में रहते हैं। समयांतराल $\frac{T}{4}$ में संपर्क बल का मान $0$ से $F_0$ तक रैखिक रूप से बढ़ता है, तत्पश्चात् $\frac{T}{2}$ समय तक नियत रहता है तथा फिर $\frac{T}{4}$ समय में रैखिक रूप से घटकर शून्य हो जाता है, जैसा कि चित्र में प्रदर्शित है। $F_0$ का परिमाण है
शांत जल में खड़ी एक नाव से जब कोई व्यक्ति किनारे पर कूदता है तब नाव
न्यूटन की गति का तृतीय नियम निम्न के संरक्षण का नियम है
$m$ द्रव्यमान का एक पत्थर $l$ लम्बाई के धागे से बाँधकर नियत चाल $v$ से वृत्तीय पथ पर घुमाया जाता है यदि डोरी को छोड़ दें, तो पत्थर की गति होगी
$m$ द्रव्यमान का एक कण संवेग $p$ से एक सीधी रेखा में जा रहा है। समय $t =0$ से आरम्भ करके उसी दिशा में एक बल $F = kt$ इस गतिमान कण पर समयान्तराल $T$ तक लगता है तो, इसका संवेग $p$ से बदलकर $3 p$ हो जाता है। यहाँ $k$ एक स्थिरांक है। $T$ का मान है।