એક લાંબા નળાકારમાં $\rho \;Cm ^{-3}$ ધનતા ધરાવતો વિદ્યુતભાર નિયમિત રીતે વહેંચાયેલો છે. $Vm ^{-1}$ હશે.નળાકારની અંદર તેની અક્ષથી $ x=\frac{2 \varepsilon_{0}}{\rho} \,m$ અંતરે વિદ્યુતક્ષેત્ર ગણો. વિદ્યુતક્ષેત્રનું મૂલ્ય ........ $Vm ^{-1}$ હશે.
$2$
$1$
$0$
$3$
પૃષ્ઠ $S$ માંથી કેટલું વિદ્યુત ફલ્કસ પસાર થાય?
વિદ્યુત ફલક્સનો $\mathrm{SI}$ એકમ લખો.
કેન્દ્ર પર રહેલા બિંદુવત્ વિધુતભાર $\mathrm{q}$ ને ઘેરતા $\mathrm{r}$ ત્રિજ્યાના ગોળામાંથી પસાર થતાં ફલક્સ પરથી ગાઉસનો નિયમ મેળવો.
પોલા નળાકાર પર નિયમિત વિધુતભાર વિતરણ આકૃતિમાં બતાવ્યું છે, તો તેની વિધુત ક્ષેત્રરેખાઓ દોરો.
$\mathrm{‘a'}$ બાજુવાળા ઘનમાંથી પસાર થતું ફલક્સ આકૃતિમાં બતાવ્યું છે કે જ્યારે વિધુતભાર $\mathrm{q}$ ને,
$(i)$ ઘનની એક સપાટીના કેન્દ્ર $\mathrm{C}$ પર
$(ii)$ $\mathrm{B}$ અને $\mathrm{C}$ ના મધ્યબિંદુ $\mathrm{D}$ પર
મૂકવામાં આવે છે તો ઘનની બધી બાજુએથી પાસાર થતાં ફ્લક્સ વિષે માહિતી આપો