A long cylindrical volume contains a uniformly distributed charge of density $\rho \;Cm ^{-3}$. The electric field inside the cylindrical volume at a distance $x =\frac{2 \varepsilon_{0}}{\rho} m$ from its axis is $.......Vm ^{-1}$
$2$
$1$
$0$
$3$
A point charge $+Q$ is positioned at the centre of the base of a square pyramid as shown. The flux through one of the four identical upper faces of the pyramid is
The spatial distribution of the electric field due to two charges $(A,\,B)$ is shown in figure. Which one of the following statements is correct ?
The circular wire in figure below encircles solenoid in which the magnetic flux is increasing at a constant rate out of the plane of the page. The clockwise emf around the circular loop is $\varepsilon_{0}$. By definition a voltammeter measures the voltage difference between the two points given by $V_{b}-V_{a}=-\int \limits_{a}^{b} E \cdot d s$ We assume that $a$ and $b$ are infinitesimally close to each other. The values of $V_{b}-V_{a}$ along the path $1$ and $V_{a}-V_{b}$ along the path $2$ , respectively are
In a region of space the electric field is given by $\vec E = 8\hat i + 4\hat j+ 3\hat k$. The electric flux through a surface of area $100\, units$ in the $x-y$ plane is....$units$
An infinite line charge is at the axis of a cylinder of length $1 \,m$ and radius $7 \,cm$. If electric field at any point on the curved surface of cylinder is $250 \,NC ^{-1}$, then net electric flux through the cylinder is ............ $Nm ^2 C ^{-1}$