किसी लम्बे बेलनाकार आयतन का आवेश घनत्व $\rho Cm ^{-3}$ है, जो कि पूरे आयतन में एकसमान रूप से फैला हुआ है। बेलनाकार आयतन के अंदर इसकी अक्ष से $x =\frac{2 \varepsilon_0}{\rho}\,m$ दूरी पर विद्युत क्षेत्र का मान $...........Vm ^{-1}$ होगा।
$2$
$1$
$0$
$3$
मुक्त आकाश के एक क्षेत्र में विद्युत क्षेत्र दिया जाता हैं $\overrightarrow{ E }= E _{ o } \hat{i}+2 E _{ o } \hat{j}$ जहाँ $E _{0}=100 \;N / C$ । $Y - Z$ तल के समान्तर $0.02 \;m$ त्रिज्या के वृत्तीय पृष्ठ से गुजरने पर इस विद्युत क्षेत्र का फ्लक्स लगभग हैं :
मूलबिन्दु पर अवस्थित $2 \times 10^{-9}\, m ^{3}$ के किसी वार्धिक आयतन में परिबद्ध कुल आवेश $......\,nC$ होगा, यदि इसके क्षेत्र का विधुत फ्लक्स घनत्व $D = e ^{- x } \sin y \hat{ i }- e ^{- x } \cos y \hat{ j }+2 z \hat{ k } C / m ^{2}$ पाया जाता है।
चित्रानुसार, एक वृत्तीय तार (wire) परिनालिका को घेराबंद करता है परिनालिका में चुम्बकीय फ्लक्स एक नियत दर से इस पृष्ठ के तल से बाहर की ओर बढ़ रहा है. वृत्ताकार तार के परितः दक्षिणावर्त विद्युत वाहक बल $\varepsilon_0$ है. परिभाषा के अनुसार, वोल्टामीटर, दिए गए दो बिन्दुओं के मध्य वोल्टता के अंतर को निम्न समीकरण $V _{ b }- V _{ s }=\int_a^b \bar{E} \cdot d \bar{s}$ के अनुसार मापता है. मान लीजिये कि $a$ और $b$ एक-दूसरे के अत्यणु निकट हैं. तो पथ 1 के अनुरूप $V _{ b }- V _{ a }$ और पथ 2 के अनुरूप $V _{ a }- V _{ b }$ के मान क्रमशः क्या हैं?
$5 \mathrm{Q}$ तथा $-2 \mathrm{Q}$ के दो आवेश क्रमशः बिन्दु $(3 \mathrm{a}, 0)$ तथा $(-5 \mathrm{a}, 0)$ पर स्थित हैं। ' $4 \mathrm{a}$ ' त्रिज्या तथा मूल बिन्दु पर स्थित केन्द्र वाले गोले से गुजरने वाला वैद्युत फ्लक्स है:
चार बंद पृष्ठ तथा उनके आवेश विन्यास को निम्न चित्र में दर्शाया गया है।
यदि उनके पृष्ठ से बद्ध वैद्युत फ्लक्स क्रमशः $\Phi_{1}, \Phi_{2^{\prime}} \Phi_{3}$ तथा $\Phi_{4}$ हों तो