एक लंबाई माप $(l)$ की निर्भरता, पराविधुत पदार्थ के पराविद्युतांक $(\varepsilon)$, बोल्टज़मान स्थिरांक (Boltzmann constant) $\left(k_B\right)$, परम ताप $(T)$, एक आयतन में कुछ आवेशित कणों की संख्या $(n)$ (संख्या-घनत्व) तथा हर एक कण के आवेश $(q)$ पर होती है। $l$ के लिए निम्नलिखित में से सही विमीयता वाला कौनसा / कौनसे सूत्र है/हैं?
$(A)$ $l=\sqrt{\left(\frac{n q^2}{\varepsilon k_B T}\right)}$
$(B)$ $l=\sqrt{\left(\frac{\varepsilon k_B T}{n q^2}\right)}$
$(C)$ $\quad l=\sqrt{\left(\frac{q^2}{\varepsilon n^{2 / 3} k_B T}\right)}$
$(D)$ $l=\sqrt{\left(\frac{q^2}{\varepsilon n^{1 / 3} k_B T}\right)}$
$B,A$
$B,C$
$C,A$
$B,D$
एक द्रव्यमान $m$ स्प्रिंग से लटका है जिसका स्प्रिंग नियतांक $K$ है। इस द्रव्यमान की आवृत्ति $f$ निम्न सूत्र द्वारा दर्शायी जा रही है $f = C.{m^x}.{K^y}$ यहाँ पर $C$ एक विमाहीन राशि है। $x$ और $y$ के मान होंगें
विधुतचुम्बकीय सिद्धांत के अनुसार विद्युत् और चुम्बकीय परिघटनाओं (phenomena) के बीच संबंध होता है। इसलिए विधुत और चुम्बकीय राशियों के विमाओं (dimensions) में भी संबंध होने चाहिए। निम्नलिखित प्रश्नों में $[E]$ और $[B]$ क्रमशः विधुत और चुम्बकीय क्षेत्रों की विमाओं को दर्शाते हैं, जबकि [ $\left.\epsilon_0\right]$ और $\left[\mu_0\right]$ क्रमशः मुक्त आकाश (free space) की पराविधुटांक (permittivity) और चुम्बकशीलता (permeability) की विमाओं को दर्शाते हैं। $[L]$ और $[T]$ क्रमशः लम्बाई और समय की विमायें हैं। सभी राशियाँ SI मात्रकों (units) में दी गयी हैं ।
($1$) $[E]$ और $[B]$ के बीच में संबंध है
$(A)$ $[ E ]=[ B ][ L ][ T ]$ $(B)$ $[ E ]=[ B ][ L ]^{-1}[ T ]$ $(C)$ $[ E ]=[ B ][ L ][ T ]^{-1}$ $(D)$ $[ E ]=[ B ][ L ]^{-1}[ T ]^{-1}$
($2$) $\left[\epsilon_0\right]$ और $\left[\mu_0\right]$ के बीच में संबंध है
$(A)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^2[ T ]^{-2}$ $(B)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^{-2}[ T ]^2$ $(C)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^2[ T ]^{-2}$ $(D)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^{-2}[ T ]^2$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
एक भौतिक राशि $x$, अन्य भौतिक राशियों $y$ तथा $z$ पर निम्न प्रकार निर्भर करती है, $x = Ay + B\;\tan \;Cz$ जहाँ $A,\;B$ तथा $C$ नियतांक हैं । निम्न में से किनकी विमायें समान नहीं हैं
एक स्तम्भ, जिसमें $\eta $ श्यानता गुणांक का श्यान द्रव भरा है, में से होकर एक स्टील की छोटी गेंद जिसकी त्रिज्या $r$ है, को गुरुत्वीय त्वरण के अधीन गिराया जाता है। कुछ समय पश्चात गेंद एक नियत मान ${v_T}$ जिसे सीमान्त मान कहते है, को प्राप्त कर लेती है। सीमान्त वेग ${\rm{(i)}}$गेंद के द्रव्यमान $m$ पर ${\rm{(ii)}}$ $\eta $ पर ${\rm{(iii)}}$ $r$ पर ${\rm{(iv)}}$ और गुरुत्वीय त्वरण $g$ पर निर्भर करता है। निम्न में से कौनसा सम्बन्ध विमीय रुप से सही है
एक तरंग का समीकरण, $Y = A\sin \omega \left( {\frac{x}{v} - K} \right)$ से दिया जाता है। जहाँ $\omega $ कोणीय वेग तथा $v$ रेखीय वेग है। $K$ की विमा है