एक $5$ सेमी त्रिज्या के खोखले गोलाकार को $10$ वोल्ट तक आवेशित किया जाता है। गोलाकार के केन्द्र पर विद्युत विभव होगा
$0\, V$
$10\, V$
समान जितना कि उससे $5$ सेमी की दूरी पर होता है
समान जितना कि उससे $25$ सेमी की दूरी पर होता है
छह आवेशों को एक नियमित षट्भुज (hexagon) जिसकी भुजा की लम्बाई $a$ है, के परितः (around) रखा गया है, जैसा कि चित्र में दर्शाया गया है। उनमें से पांच का आवेश $q$, तथा बचे हुए एक आवेश $x$ है। प्रत्येक आवेश से षट्भुज की समीपतम भुजा पर डाला गया लम्बवत षट्भुज के केंद्र $O$ से गुजरता है तथा उस भुजा के द्वारा द्विभाजित (bisect) होता है।
निम्न में से कौन सा (से) कथन SI मानक में सही है (हैं)?
$(A)$ जब $x=q$, $O$ पर विधुत क्षेत्र (electrical field) का परिमाण शून्य है।
$(B)$ जब $x=-q, O$ पर विधुत क्षेत्र का परिमाण $\frac{q}{6 \pi \epsilon_0 a^2}$ है।
$(C)$ जब $x=2 q$, $O$ पर विभव (potential) $\frac{7 q}{4 \sqrt{3} \pi \epsilon_0 a}$ है।
$(D)$ जब $x=-3 q$, $O$ पर विभव $-\frac{3 q}{4 \sqrt{3} \pi \epsilon_0 a}$ है ।
$8$ सेमी भुजा के एक वर्ग के चारों कोनों पर $ + \frac{{10}}{3} \times {10^{ - 9}}C$ के आवेश में रखे गये हैं। विकर्णों के प्रतिच्छेद बिन्दु पर विभव होगा
किसी वर्ग के चार कोनों पर बिन्दु आवेश $-Q,-q, 2 q$ तथा $2 Q$ क्रमशः रखे गये हैं। $Q$ तथा $q$ के बीच क्या संबंध होना चाहिये, ताकि वर्ग के केन्द्र पर विभव शून्य हो जाए :
$R$ त्रिज्या के गोलीय चालक के केन्द्र से $R/2$ दूरी पर विभव होगा
$9.0×{10^{ - 13}}$ सेमी त्रिज्या वाले परमाणवीय नाभिक $(Z = 50)$ की सतह पर विद्युत विभव