दो स्प्रिंगों के बल नियतांक ${K_1}$ तथा ${K_2}$ हैं। उन्हें क्रमश: ${F_1}$ तथा ${F_2}$ बलों से इस प्रकार खींचा जाता है कि उनकी प्रत्यास्थ ऊर्जा बराबर हो, तो ${F_1}:{F_2}$ है
${K_1}:{K_2}$
${K_2}:{K_1}$
$\sqrt {{K_1}} :\sqrt {{K_2}} $
$K_1^2:K_2^2$
बल नियतांक $k$ वाली किसी स्प्रिंग के एक सिरे को एक ऊध्र्वाधर दीवार से कस कर दूसरे सिरे पर $m$ द्रव्यमान का एक गुटका जोड़ा जाता है जो कि एक चिकने क्षैतिज तल पर रखा है गुटके के दूसरे ओर ${x_0}$ दूरी पर एक और ऊध्र्वाधर दीवार है। यदि स्प्रिंग को $2{x_0}$ लम्बाई से संपीड़ित करके छोड़ दें तो गुटका कितने समय पश्चात् दीवार से टकरायेगा
एक स्प्रिंग् से कोई द्रव्यमान $m$ लटकाकर दोलन कराने पर आवर्तकाल $T$ है। स्प्रिंग् को अब दो बराबर भागों में विभक्त कर किसी एक भाग से वही द्रव्यमान लटकाने पर आवर्तकाल होगा
$m$ द्रव्यमान का पिण्ड, $k$ बल नियतांक वाली स्प्रिंग् पर आवर्तकाल $T$ के दोलन करता है। यदि स्प्रिंग् के दो बराबर भाग करके उन्हें समान्तर में चित्रानुसार जोड़कर उसी द्रव्यमान को फिर से दोलन कराए जाएँ तब आवर्तकाल होगा
निम्न कथनों में से सही कथन है
किसी स्प्रिंग से लटका हुआ $m$ द्रव्यमान $2\, sec$ में एक दोलन पूर्ण करता है यदि द्रव्यमान में $2 \,kg$ की वृद्धि कर दी जाये तो आवर्तकाल में $1\, sec$ की वृद्धि हो जाती है। द्रव्यमान $m$ है .... $kg$