एक विमारहित राशि को इलेक्ट्रॉनिक आवेश $e$, मुक्त आकाश की विद्युतशीलता (permittivity) $\varepsilon_0$, प्लांक स्थिरांक $h$ तथा प्रकाश की चाल $c$ से व्यक्त करते हैं। यदि इस विमारहित राशि को $e^\alpha \varepsilon_0^\beta h^\gamma c^\delta$ से निर्दिष्ट किया जाता है तथा $n$ एक अशून्य पूर्णांक है तो $(\alpha, \beta, \gamma, \delta)$ का मान होगा,
$(2 n,-n,-n,-n)$
$(n,-n,-2 n,-n)$
$(n,-n,-n,-2 n)$
$(2 n,-n,-2 n,-2 n)$
एक स्तम्भ, जिसमें $\eta $ श्यानता गुणांक का श्यान द्रव भरा है, में से होकर एक स्टील की छोटी गेंद जिसकी त्रिज्या $r$ है, को गुरुत्वीय त्वरण के अधीन गिराया जाता है। कुछ समय पश्चात गेंद एक नियत मान ${v_T}$ जिसे सीमान्त मान कहते है, को प्राप्त कर लेती है। सीमान्त वेग ${\rm{(i)}}$गेंद के द्रव्यमान $m$ पर ${\rm{(ii)}}$ $\eta $ पर ${\rm{(iii)}}$ $r$ पर ${\rm{(iv)}}$ और गुरुत्वीय त्वरण $g$ पर निर्भर करता है। निम्न में से कौनसा सम्बन्ध विमीय रुप से सही है
एक वास्तविक गैस का समीकरण
$\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$ द्वारा दिया गया है, जहाँ
$\mathrm{P}, \mathrm{V}$ तथा $\mathrm{T}$ क्रमशः दाब, आयतन तथा तांपमान है
एवं $\mathrm{R}$ सार्वत्रिक गैस नियतांक है। $\frac{\mathrm{a}}{\mathrm{b}^2}$ की विमा किसके समतुल्य है ?
सूत्र $X = 3Y{Z^2}$ में $X$ और $Z$ क्रमश: धारिता और चुम्बकीय क्षेत्र की विमायें हैं। $SI$ पद्धति में $Y$ की विमायें हैं
मात्रकों की किसी पद्धति में यदि बल $(F)$, त्वरण $(a)$ एवं समय $(T) $ को मूल मात्रक माना जाये तो ऊर्जा का विमीय-सूत्र होगा