એક પાસાને ફેંકવામાં આવ્યો છે. નીચે આપેલ ઘટનાઓની સંભાવના શોધો :
$1$ કે $1 $ થી નાની સંખ્યા આવે.
The sample space of the given experiment is given by
$S=\{1,2,3,4,5,6\}$
Let $C$ be the event of the occurrence of a number less than or equal to one.
Accordingly, $C\{1\}$
$\therefore P(C)=\frac{\text { Number of outcomes favourable to } C}{\text { Total number of possible outcomes }}=\frac{n(C)}{n(S)}=\frac{1}{6}$
એક પાસાની બે બાજુઓમાંથી પ્રત્યેક પર સંખ્યા $“1”$ દર્શાવેલ છે, ત્રણ બાજુઓમાં પ્રત્યેક પર સંખ્યા $“2”$ દર્શાવેલ છે અને એક બાજુ પર સંખ્યા $“3”$ છે. જો આ પાસાને એકવાર ફેંકવામાં આવે તો નીચે આપેલ શોધો : $P(1$ અથવા $3)$
ત્રણ પાસાને એકસાથે ઉછાળતાં ત્રણેય પર સમાન અંક આવે તેની સંભાવના મેળવો.
શબ્દ $\mathrm {'ASSASSINATION'}$ માંથી એક અક્ષર યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. તે એક વ્યંજન હોય તો પસંદ કરેલા અક્ષરની સંભાવના શોધો.
$A$ અને $B$ બે ઘટનાઓ એવા પ્રકારની છે કે $P(A) = 0.54, P(B) = 0.69$ અને$P(A \cap B)=0.35$ $P ( A \cup B )$ શોધો.
ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
$3$ છાપ મળે.