$R$ त्रिज्या तथा $L$ लम्बाई के एक बेलन को एकसमान वैद्युत क्षेत्र $E$ के अनुदिश अक्ष में रखा गया है, तो बेलन के पृष्ठ से सम्पूर्ण फ्लक्स हेतु व्यंजक है
$2\pi {R^2}E$
$\pi {R^2}/E$
$(\pi {R^2} - \pi R)/E$
शून्य
एक धात्विक घन को धनावेश $Q$ दिया गया है। इस व्यवस्था के लिए, निम्न में से कौनसा कथन सत्य है
एक घनाकार आयतन सतहों $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0$, $\mathrm{y}=\mathrm{a}, \mathrm{z}=0, \mathrm{z}=\mathrm{a}$ से परिबद्ध है। इस प्रभाग में विधुत क्षेत्र $\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \mathrm{x} \hat{\mathrm{i}}$ दिया गया है, जहाँ $\mathrm{E}_0=4 \times 10^4 \mathrm{NC}^{-1} \mathrm{~m}^{-1}$ है। यदि $\mathrm{a}=2 \mathrm{~cm}$ है तो घनाकार आयतन में परिबद्ध आवेश $\mathrm{Q} \times 10^{-14} \mathrm{C}$ है। $\mathrm{Q}$ का मान______________ है। $\left(\epsilon_0=9 \times 10^{-12} \mathrm{C}^2 / \mathrm{Nm}^2\right)$
यदि बन्द पृष्ठ के लिए $\oint_s \vec{E} \cdot \overrightarrow{d S}=0$ है, तब :
चित्रानुसार एक स्थिरवैद्युत क्षेत्र रेखा, बिन्दु आवेश $q_1$ से कोण $\alpha$ पर निकलती है तथा बिन्दु आवेश $-q_2$ से कोण $\beta$ पर मिलती है। यहाँ $q _1$ तथा $q _2$ दोनों धनात्मक हैं। यदि $q _2=\frac{3}{2} q _1$ तथा $\alpha=30^{\circ}$, तब
$R$ त्रिज्या की वृत्तीय चकती पृष्ठीय आवेश घनत्व $\sigma( r )=\sigma_0\left(1-\frac{ r }{ R }\right)$, ग्रहण किये हुये है, जहाँ $\sigma_0$ एक नियतांक है तथा $r$ चकती के केन्द्र से दूरी है। एक बड़ी गोलीय सतह जो आवेशित चकती को पूर्णत: परिबद्ध करती है, से गुजरने वाला विद्युत फ्लक्स $\phi_0$ है। $\frac{ R }{4}$ त्रिज्या वाली तथा चकती के साथ संकेन्द्रित एक अन्य गोलीय सतह से गुजरने वाला विद्युत फ्लक्स $\phi$ है। तब अनुपात $\frac{\varphi_0}{\varphi}$ का मान. . . . . है।