एक घनाकार आयतन सतहों $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0$, $\mathrm{y}=\mathrm{a}, \mathrm{z}=0, \mathrm{z}=\mathrm{a}$ से परिबद्ध है। इस प्रभाग में विधुत क्षेत्र $\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \mathrm{x} \hat{\mathrm{i}}$ दिया गया है, जहाँ $\mathrm{E}_0=4 \times 10^4 \mathrm{NC}^{-1} \mathrm{~m}^{-1}$ है। यदि $\mathrm{a}=2 \mathrm{~cm}$ है तो घनाकार आयतन में परिबद्ध आवेश $\mathrm{Q} \times 10^{-14} \mathrm{C}$ है। $\mathrm{Q}$ का मान______________ है। $\left(\epsilon_0=9 \times 10^{-12} \mathrm{C}^2 / \mathrm{Nm}^2\right)$
$280$
$250$
$260$
$288$
किसी दिए गए तल के लिए ‘गॉस का नियम’ इस प्रकार लिखते हैं इससे हम यह निष्कर्ष निकाल सकते हैं कि
यदि बन्द पृष्ठ के लिए $\oint_s \vec{E} \cdot \overrightarrow{d S}=0$ है, तब :
${q_1},\;{q_2},\;{q_3}$ व ${q_4}$ बिन्दु आवेश चित्रानुसार स्थित हैं। $S$ एक $R$ त्रिज्या का गॉसीय पृष्ठ है। गॉस नियम के अनुसार निम्न में से क्या सही है
तीन समान धन आवेश $q$ एक समबाहु त्रिभुज के शीर्षों पर रखे हैं परिणामी विद्युत बल रेखाऐं निम्न प्रकार से खींची जा सकती है
एक घन जिसकी भुजा $l$ है, को एकसमान विद्युत क्षेत्र में रखा जाता है जबकि है। इस घन से निकलने वाले फ्लक्स का मान होगा