$9$ કુમારી અને $4$ કુમારીઓમાંથી $7$ સભ્યોની સમિતિ બનાવવી છે. જેમાં વધુમાં વધુ $3$ કુમારીઓ હોય એવી કેટલી સમિતિની રચના થઈ શકે ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since atmost $3$ girls are to be there in every committee, the committee can consist of

$(a)$ $3$ girls and $4$ boys

$(b)$ $2$ girls and $5$ boys

$(c)$ $1$ girl and $6$ boys

$(d)$ No girl and $7$ boys

$3$ girls and $4$ boys can be selected in $^{4} C_{3} \times^{9} C_{4}$ ways.

$2$ girls and $5$ boys can be selected in $^{4} C_{2} \times^{9} C_{5}$ ways.

$1$ girl and $6$ boys can be selected in $^{4} C_{1} \times^{9} C_{6}$ ways.

No girl and $7$ boys can be selected in $^{4} C_{0} \times^{9} C_{7}$ ways.

Therefore, in this case, required number of ways

$=^{4} C_{3} \times^{9} C_{4}+^{4} C_{2} \times^{9} C_{5}+^{4} C_{1} \times^{9} C_{6}+^{4} C_{0} \times^{9} C_{7}$

$=\frac{4 !}{3 ! 1 !} \times \frac{9 !}{4 ! 5 !}+\frac{4 !}{2 ! 2 !} \times \frac{9 !}{5 ! 4 !}+\frac{4 !}{1 ! 3 !} \times \frac{9 !}{6 ! 3 !}+\frac{4 !}{0 ! 4 !} \times \frac{9 !}{7 ! 2 !}$

$=504+756+336+36$

$=1632$

Similar Questions

બધાજ અંકો $1, 1, 2, 2, 2, 2, 3, 4, 4$ નો ઉપયોગ કરી કેટલી સંખ્યા બનાવી શકાય કે જેમાં અયુગ્મ અંકો એ યુગ્મ સ્થાને આવે .

  • [JEE MAIN 2019]

જો અંકોનું પુનરાવર્તન ન કરવાનું હોય તો $0, 1, 2, 4$ અને $5$ અંકોનો ઉપયોગ કરી $1000$ થી નાની કેટલી સંખ્યા બનાવી શકાય?

જો  $\left( {\begin{array}{*{20}{c}}
  {{a^2} + a} \\ 
  3 
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  {{a^2} + a} \\ 
  9 
\end{array}} \right)\,$  હોય, તો $a\, = \,\,........$

છ પુરૂષ અને ચાર સ્ત્રી માંથી પાંચ સભ્યની કેટલી કમિટિ બનાવી શકાય કે જેમાં ઓછામાં ઓછી એક સ્ત્રી હોય.                                                     

  • [IIT 1968]

$_nC_{r+1} + _nC_{r-1} + 2_n C_r = ….$