વર્તુળ $\mathrm{C}$ એ રેખા $\mathrm{x}=2 \mathrm{y}$ ને બિંદુ $(2,1)$ આગળ સ્પર્શે છે અને વર્તુળ $C_{1}: x^{2}+y^{2}+2 y-5=0$ ને બે બિંદુઓ $\mathrm{P}$ અને $\mathrm{Q}$ એવી રીતે છેદે છે કે જેથી $\mathrm{PQ}$ એ વર્તુળ $\mathrm{C}_{1}$ નો વ્યાસ થાય છે તો વ્યાસ $\mathrm{C}$ મેળવો.
$7 \sqrt{5}$
$15$
$\sqrt{285}$
$4 \sqrt{15}$
અહી વર્તુળ $c_{1}: x^{2}+y^{2}-2 x-$ $6 y+\alpha=0$ નું રેખા $y=x+1$ ની સાપેક્ષે પ્રતિબિંબ $c_{2}: 5 x^{2}+5 y^{2}+10 g x+10 f y +38=0$ છે. જો $r$ એ વર્તુળ $c _{2}$ ત્રિજ્યા હોય તો $\alpha+6 r^{2}$ ની કિમંત મેળવો.
વર્તૂળ $x^2 + y^2 + 2gx + 2fy + \alpha = 0$ પરના કોઈપણ બિંદુ પરથી વર્તૂળ $x^2 + y^2 + 2gx + 2fy + \beta = 0$ પર દોરેલ સ્પર્શકની લંબાઈ :
વર્તુળનું સમીકરણ મેળવો કે જે વર્તુળો ${x^2} + {y^2} - 6x + 8 = 0$ અને ${x^2} + {y^2} = 6$ ના છેદબિંદુમાંથી પસાર થાય અને બિંદુ $(1, 1)$ માંથી પસાર થાય .
જો વર્તૂળો $ x^2 + y^2 + 2x + 2ky + 6 = 0$ અને $ x^2 + y^2 + 2ky + k = 0 $ લંબરૂપે છેદે, તો $k = ..........$
બે સમાન ત્રિજ્યા ધરાવતા વર્તુળો બિંદુ $(0, 1)$ અને $(0, -1)$ માં છેદે છે બિંદુ $(0, 1)$ આગળ એક વર્તુળનો સ્પર્શક આંતરવામાં આવે તો તે બીજા વર્તુળના કેન્દ્ર માંથી પસાર થી તો બંને વર્તુળના કેન્દ્ર વચ્ચેનું અંતર મેળવો.