સમઘનના કેન્દ્ર પર $Q\;\mu C$ વિદ્યુતભાર મૂકેલો છે. તો સમઘનના કોઈ પણ પૃષ્ઠમાંથી પસાર થતું ફ્લક્સ કેટલું હશે?
$\frac{Q}{8 \varepsilon_{0}} $
$\frac{Q}{24 \varepsilon_{0}}$
$\frac{Q}{6 \varepsilon_{0}} \times 10^{-3}$
$\frac{Q}{6 \varepsilon_{0}} \times 10^{-6}$
નીચે બે વિધાન આપવામાં આવ્યા છે :
વિધાન $I :$ એક વિદ્યુત દ્વિધ્રુવીને પોલા ગોળાના કેન્દ્રમાં મૂકવામાં આવે છે. ગોળામાંથી પસાર થતા વિદ્યુત ક્ષેત્રનું ફલકસ શૂન્ય છે પરંતુ ગોળામાં ક્યાંય વિદ્યુત ક્ષેત્ર શૂન્ય નથી.
વિધાન $II :$ ઘન ધાત્વીક ગોળાની ત્રિજ્યા $'R'$ અને તેના પર રહેલો કુલ વિજભાર $Q$ છે.$r ( < R)$ ત્રિજ્યા ધરાવતા ગોલીય સપાટીના કોઈપણ બિંદુ પર વિદ્યુત ક્ષેત્ર શૂન્ય છે પરંતુ $‘r'$ ત્રિજ્યા ધરાવતા આ બંધ ગોલીય સપાટીમાંથી પસાર થતા વિદ્યુત ફ્લકસ નું મૂલ્ય શૂન્ય નથી.
ઉપરોક્ત વિધાનને અનુલક્ષીને આપેલ વિકલ્પોમાંથી સાચો જવાબ પસંદ કરો :
જો બંધ સપાટી પર $\oint_s \vec{E} \cdot \overrightarrow{d S}=0$, તો
સાદા વિધુતભાર વિતરણની ક્ષેત્રરેખાઓ દોરો.
વિદ્યુતક્ષેત્રને $\vec{E}=4000 x^2 \hat{i} \frac{ V }{ M }$ સમીકરણ વડે રજૂ કરેલ છે. $20\,cm$ ની બાજુ (આકૃત્તિમાં દર્શાવ્યા અનુસાર) ધરાવતા સમધનમાંથી પસાર થતું ફ્લક્સ $................V\,cm$ થશે.
$\vec E\,\, = \,\,3\,\, \times \,\,{10^3}\,\hat i\,\,(N\,/\,\,C)$ લો. $10\, cm$ ની બાજુવાળા ચોરસમાંથી પસાર થતું ફલક્સ કેટલા .......$Nm^2/C$ હશે ? તેનો સ્પર્શક $X$ અક્ષ સાથે $60^°$ ખૂણો બનાવે છે.