$52$ પત્તા પૈકી એક પત્તુ પસંદ કરતાં તે પૈકી રાણી અથવા લાલ પત્તુ હોવાની સંભાવના કેટલી થાય ?
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
$A$ અને $B$ પરસ્પર નિવારક છે.
એક સમતોલ સિક્કાને ચાર-વાર ઉછાળવામાં આવે છે અને એક વ્યક્તિ પ્રત્યેક છાપ $(H)$ પર $Rs. 1$ જીતે છે અને પ્રત્યેક કાંટા $(T) $ પ૨ $Rs.1.50$ હારે છે. આ પ્રયોગનાં નિદર્શાવકાશ પરથી શોધો કે ચાર વાર સિક્કાને ઉછાળ્યા પછી તે કેટલી ૨કમ પ્રાપ્ત કરી શકે છે તથા આ પ્રત્યેક રકમની સંભાવના શોધો.
એક પાસાની બે બાજુઓમાંથી પ્રત્યેક પર સંખ્યા $“1”$ દર્શાવેલ છે, ત્રણ બાજુઓમાં પ્રત્યેક પર સંખ્યા $“2”$ દર્શાવેલ છે અને એક બાજુ પર સંખ્યા $“3”$ છે. જો આ પાસાને એકવાર ફેંકવામાં આવે તો નીચે આપેલ શોધો : $P(1$ અથવા $3)$
સરખી રીતે ચીપેલાં $52$ પત્તાંની એક થોકડીમાંથી યાદચ્છિક રીતે એક પતું ખેંચવામાં આવે છે. પતું ચોકટનું હોય તેની સંભાવના મેળવો