The area of the triangle bounded by the straight line $ax + by + c = 0,\,\,\,\,(a,b,c \ne 0)$ and the coordinate axes is
$\frac{1}{2}\frac{{{a^2}}}{{|bc|}}$
$\frac{1}{2}\frac{{{c^2}}}{{|ab|}}$
$\frac{1}{2}\frac{{{b^2}}}{{|ac|}}$
$0$
The diagonals of the parallelogram whose sides are $lx + my + n = 0,$ $lx + my + n' = 0$,$mx + ly + n = 0$, $mx + ly + n' = 0$ include an angle
If two vertices of a triangle are $(5, -1)$ and $( - 2, 3)$ and its orthocentre is at $(0, 0)$, then the third vertex
Equations of diagonals of square formed by lines $x = 0,$ $y = 0,$$x = 1$ and $y = 1$are
Let $\mathrm{A}(-2,-1), \mathrm{B}(1,0), \mathrm{C}(\alpha, \beta)$ and $\mathrm{D}(\gamma, \delta)$ be the vertices of a parallelogram $A B C D$. If the point $C$ lies on $2 x-y=5$ and the point $D$ lies on $3 x-2 y=6$, then the value of $|\alpha+\beta+\gamma+\delta|$ is equal to_____.
If the coordinates of the points $A,\, B,\, C$ be $(-1, 5),\, (0, 0)$ and $(2, 2)$ respectively and $D$ be the middle point of $BC$, then the equation of the perpendicular drawn from $B$ to the line $AD$ is