If the extremities of the base of an isosceles triangle are the points $(2a,0)$ and $(0,a)$ and the equation of one of the sides is $x = 2a$, then the area of the triangle is

  • [JEE MAIN 2013]
  • A

    $5{a^2}sq$. units

  • B

    $\frac{5}{2}{a^2}sq.$units

  • C

    $\frac{{25{a^2}}}{2}sq.$units

  • D

    None of these

Similar Questions

In a rectangle $A B C D$, the coordinates of $A$ and $B$ are $(1,2)$ and $(3,6)$ respectively and some diameter of the circumscribing circle of $A B C D$ has equation $2 x-y+4=0$. Then, the area of the rectangle is

  • [KVPY 2011]

$ABC$ is an isosceles triangle . If the co-ordinates of the base are $(1, 3)$ and $(- 2, 7) $, then co-ordinates of vertex $A$ can be :

The line $\frac{x}{a} + \frac{y}{b} = 1$ moves in such a way that $\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{2{c^2}}}$, where $a, b, c \in R_0$ and $c$ is constant, then locus of the foot of the perpendicular from the origin on the given line is -

For a point $P$ in the plane, let $d_1(P)$ and $d_2(P)$ be the distance of the point $P$ from the lines $x-y=0$ and $x+y=0$ respectively. The area of the region $R$ consisting of all points $P$ lying in the first quadrant of the plane and satisfying $2 \leq d_1(P)+d_2(P) \leq 4$, is

  • [IIT 2014]

If the locus of the point, whose distances from the point $(2,1)$ and $(1,3)$ are in the ratio $5: 4$, is $a x^2+b y^2+c x y+d x+e y+170=0$, then the value of $\mathrm{a}^2+2 \mathrm{~b}+3 \mathrm{c}+4 \mathrm{~d}+\mathrm{e}$ is equal to:

  • [JEE MAIN 2024]