$P$ એ એક બિંદુ $(a, b)$ કે જે પ્રથમ ચરણમાં આવેલ છે જો બે વર્તુળો બિંદુ $P$ માંથી પસાર થાય અને બંને અક્ષોને કાટકોણ ખૂણે સ્પર્શે તો
$a^2 - 6ab + b^2 = 0$
$a^2 + 2ab - b^2 = 0$
$a^2 - 4ab + b^2 = 0$
$a^2 - 8ab + b^2 = 0$
વર્તૂળ $x^2 + y^2 + 2gx + 2fy + \alpha = 0$ પરના કોઈપણ બિંદુ પરથી વર્તૂળ $x^2 + y^2 + 2gx + 2fy + \beta = 0$ પર દોરેલ સ્પર્શકની લંબાઈ :
જો એક વર્તૂળ, રેખાઓ $\lambda x - y + 1 = 0$ અને $x - 2y + 3 = 0$ ના યામ અક્ષો સાથેના છેદબિંદુમાંથી પસાર થાય, તો $\lambda$ નું મુલ્ય :
સમીકરણ $x^{2}+y^{2}+p x+(1-p) y+5=0$ એ વર્તુળ દર્શાવે છે કે જેની ચલિત ત્રીજ્યા $\mathrm{r} \in(0,5]$ છે તો ગણ $S=\left\{q: q=p^{2}\right.$ અને $\mathrm{q}$ એ પૂર્ણાંક છે. $\}$ ની સભ્ય સંખ્યા મેળવો.
જે વર્તૂળની ત્રિજ્યા $3$ હોય અને જે $x^{2} + y^{2} - 4x - 6y - 12 = 0 $ વર્તૂળને બિંદુ $(-1, -1)$ આગળ અંદરથી સ્પર્શેં તેવા વર્તૂળનું સમીકરણ શોધો.
વર્તૂળો ${x^2} + {y^2} = 4$ અને ${x^2} + {y^2} - 6x - 8y = 24$ ના સામાન્ય સ્પર્શકોની સંખ્યા મેળવો.