$P$ is a point $(a, b)$ in the first quadrant. If the two circles which pass through $P$ and touch both the co-ordinate axes cut at right angles, then :
$a^2 - 6ab + b^2 = 0$
$a^2 + 2ab - b^2 = 0$
$a^2 - 4ab + b^2 = 0$
$a^2 - 8ab + b^2 = 0$
Two circles ${S_1} = {x^2} + {y^2} + 2{g_1}x + 2{f_1}y + {c_1} = 0$ and ${S_2} = {x^2} + {y^2} + 2{g_2}x + 2{f_2}y + {c_2} = 0$ cut each other orthogonally, then
The number of common tangents to the circles ${x^2} + {y^2} = 1$and ${x^2} + {y^2} - 4x + 3 = 0$ is
A circle $S$ passes through the point $(0,1)$ and is orthogonal to the circles $(x-1)^2+y^2=16$ and $x^2+y^2=1$. Then
$(A)$ radius of $S$ is $8$
$(B)$ radius of $S$ is $7$
$(C)$ centre of $S$ is $(-7,1)$
$(D)$ centre of $S$ is $(-8,1)$
The centre of the smallest circle touching the circles $x^2 + y^2- 2y - 3 = 0$ and $x^2+ y^2 - 8x - 18y + 93 = 0$ is :