The number of common tangents to the circles ${x^2} + {y^2} = 1$and ${x^2} + {y^2} - 4x + 3 = 0$ is

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

Two circles of radii $4$ cms $\&\,\, 1\,\, cm$ touch each other externally and $\theta$ is the angle contained by their direct common tangents. Then $sin \theta =$

Consider the equation of circles

$S_1 : x^2 + y^2 + 24x - 10y + a = 0$

$S_2 : x^2 + y^2 = 36$ which of the following is not correct

The two circles ${x^2} + {y^2} - 2x + 6y + 6 = 0$ and ${x^2} + {y^2} - 5x + 6y + 15 = 0$

The tangent to the circle $C_1 : x^2 + y^2 - 2x- 1\, = 0$ at the point $(2, 1)$ cuts off a chord of length $4$ from a circle $C_2$ whose centre is $(3, - 2)$. The radius of $C_2$ is

  • [JEE MAIN 2018]

The value of $\lambda $, for which the circle ${x^2} + {y^2} + 2\lambda x + 6y + 1 = 0$, intersects the circle ${x^2} + {y^2} + 4x + 2y = 0$ orthogonally is