The centre of the smallest circle touching the circles $x^2 + y^2- 2y - 3 = 0$ and $x^2+ y^2 - 8x - 18y + 93 = 0$ is :
$(3 , 2)$
$(4 , 4)$
$(2 , 7)$
$(2 , 5)$
The equation of a circle passing through points of intersection of the circles ${x^2} + {y^2} + 13x - 3y = 0$ and $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ and point $(1, 1)$ is
The gradient of the radical axis of the circles ${x^2} + {y^2} - 3x - 4y + 5 = 0$ and $3{x^2} + 3{y^2} - 7x + 8y + 11 = 0$ is
If two circles ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ and ${x^2} + {y^2} - 8x + 2y + 8 = 0$ intersect in two distinct points, then
The value of $\lambda $, for which the circle ${x^2} + {y^2} + 2\lambda x + 6y + 1 = 0$, intersects the circle ${x^2} + {y^2} + 4x + 2y = 0$ orthogonally is
One of the limit point of the coaxial system of circles containing ${x^2} + {y^2} - 6x - 6y + 4 = 0$, ${x^2} + {y^2} - 2x$ $ - 4y + 3 = 0$ is