સરેરાશ મૂલ્ય પ્રમેયના અનુસાર $x \in $ [$0, 1$] અંતરાલમાં કયું વિધેય અનુસરતું નથી ?

  • A

    ${f}(x)\, = \left\{ {\begin{array}{*{20}{c}}{\frac{1}{2}\,\, - \,\,x,}&{x\,\, < \,\,\frac{1}{2}}\\{{{\left( {\frac{1}{2}\, - \,\,x} \right)}^2},}&{x\,\, \ge \,\,\frac{1}{2}}\end{array}} \right.$

  • B

    ${f}(x)\, = \,\frac{{\sin x}}{x};\,\,\,x\, \ne \,0,\,1\,;\,\,x\, = \,\,0$

  • C

    $f(x) = x | x |$

  • D

    $f(x) = | x |$

Similar Questions

વિધેય $f(x) = |x|$ એ અંતરાલ $[-1, 1]$ માં રોલ ના પ્રમેયનું પાલન કરતું નથી કારણ કે . . . .

જો  $27a + 9b + 3c + d = 0$  હોય, તો સમીકરણ $ 4ax^3 + 3bx^2 + 2cx + d = 0 $ નું ઓછામાં ઓછું એક બીજ કોની વચ્ચે હોય ?

મધ્યકમાન પ્રમેય પરથી , $f'({x_1}) = {{f(b) - f(a)} \over {b - a}}$, તો . . . .

જો $f(x)$ એ $[0, 2]$ માં મધ્યક માન પ્રમેયનું પાલન કરે છે . જો $f (0) = 0$ અને દરેક $x$ કે જે $[0, 2]$ માટે $|f'(x)|\, \le {1 \over 2}$ તો . . . .

જો $f:R \to R$ અને  $f(x)$ એ દસ ઘાતાંકીય બહુપદી છે કે જેથી $f(x)=0$ ના બધાજ બિજો વાસ્તવિક અને ભિન્ન છે . તો સમીકરણ ${\left( {f'\left( x \right)} \right)^2} - f\left( x \right)f''\left( x \right) = 0$ ને  કેટલા બિજો વાસ્તવિક છે ?