જો $27a + 9b + 3c + d = 0$ હોય, તો સમીકરણ $ 4ax^3 + 3bx^2 + 2cx + d = 0 $ નું ઓછામાં ઓછું એક બીજ કોની વચ્ચે હોય ?
$0$ અને $1$
$1$ અને $3$
$0$ અને $3$
એકપણ નહિ.
જો વિધેય $f(x) = x(x-1)(x-2);\, x \in [0,\, 1/2]$ માટે મધ્યકમાન પ્રમેયનું પાલન કરે છે તો $C =? $
જો $a + b + c = 0 $ હોય, તો સમીકરણ $3ax^2 + 2bx + c = 0$ ના કેટલા બીજ હોય ?
મધ્યકમાન પ્રમેય મુજબ ,$a < x_1 < b$ પર $f(b) -f(a) = (b -a) f '(x_1);$ હોય અને $f(x) = 1/x$ હોય તો $x_1 = ?$
અહી $\mathrm{f}$ એ અંતરાલ $[0,2]$ પર સતત છે અને અંતરાલ $(0,2)$ પર દ્રીતીય વિકલનીય છે . જો $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ અને $f(2)=2$ હોય તો . .. . .
જો $f:[-5,5] \rightarrow \mathrm{R}$ વિકલનીય વિધેય હોય અને $f^{\prime}(x)$ ક્યાંય શૂન્ય ના બને તો સાબિત કરો કે $f(-5) \neq f(5).$